Advanced Logistics Program (ALP)

PlugIn Developers' Guide (PDG)
An ALPINE Joint Venture Document

Version ALP-PDG: 5.2

22 July 1999
Please e-mail comments to: alpine-support@bbn.com

A copy of this document is available online at: http://www.alpine.bbn.com/alpine in the Alpine Released Software and Documents group area, under General Development Software and Documents.

Contents

vPreface

The Project
v
The Task
v
Purpose of this Document
v
Evolving Specifications
v
ALP Development Environment
v
ALP User Interfaces (UIs)
vi
Major Revisions in Manual Version 5.2
vi
1.
Introduction
1
1.1
Overview
1
1.1.1
ALP Concepts
1
1.1.2
Design Principles
2
2.
ALP Clusters and Cluster Society
4
2.1
A Prototype ALP Cluster
4
2.1.1
Standard PlugIn Behaviors
5
2.1.2
PlugIns Tailor Cluster Agents
6
2.2
ALP Cluster Society
7
2.2.1
Representation of Real-world Entities
7
2.2.2
Interaction with Real-world Entities
8
2.2.3
Society Awareness and Formation
8
3.
PlugIn Basics
13
3.1
Definition and Function
13
3.2
High Level View of PlugIn Operations
13
3.3
Example: Details of PlugIn Operations
14
3.4
Data Access
16
3.4.1
LDMServesPlugIn
16
3.4.2
LDMPlugInServesLDM
18
3.4.3
Responding to Cluster LDM Requests
20
3.4.4
LDM PlugIn Data Access
20
3.4.5
LdmFactory
20
3.4.6
Example of LDM PlugIn Code
22
3.5
PlugIn State Transitions
22
3.6
PlugIn Base Classes
25
3.6.1
PlugInAdapter
25
3.6.2
SingleThreadedPlugIn
25
3.6.3
SimplifiedPlugIn
25
3.6.4
ThinPlugIn
26
3.6.5
EssentialPlugIn
26
3.6.6
Using Custom Helper Classes
26
3.7
Scriptable PlugIns
26
3.7.1
Introduction
26
3.7.2
GenericScriptablePlugIn
27
3.7.3
GenericAssessorPlugIn
30
3.7.4
RuleBasedAllocatorPlugIn / RuleBasedExpanderPlugIn
31
3.7.5
List of Helper Functions available in ECMAScript
33
4.
LogPlan Data Manipulation and Dyanamic Replanning
34
4.1
Overview
34
4.1.1
Conceptual Overview
34
4.1.2
Summary of Terminology
35
4.1.3
Significant Infrastructure Changes for MB 5.1
36
4.1.4
Message Object Overview
37
4.1.5
LogPlan Object Overview
38
4.2
Structures and Interfaces
40
4.2.1
Unique Object Identifiers
40
4.2.2
PlanElements
41
4.2.3
Tasks
46
4.2.4
Preferences
48
4.2.5
Management of Typed Quantities
51
4.2.6
Aspects
52
4.2.7
Workflow Concepts
53
4.2.8
Composition
56
4.2.9
Allocation Concepts
57
4.2.10
Alert
59
4.2.11
Policy
59
4.2.12
Triggers
60
4.3
Plan API
62
4.3.1
Plan API Concepts
62
4.3.2
PlugIn Plan API Usage Model
63
4.3.3
Plan API Internal Concepts
65
4.4
LogPlan Object Creation
66
4.5
ALP Time
69
4.5.1
Overview
69
4.5.2
Interfaces
70
5.
PlugIn Paradigms and Strategies
72
5.1
Expander PlugIn Behavior
72
5.1.1
Expander Basics
72
5.1.2
Expansion / Constraint Management
74
5.1.3
Aggregation and Composition
75
5.2
Allocator PlugIn Behavior
77
5.3
Assessor PlugIn Behavior
80
5.4
Integrated PlugIn Behavior
82
5.4.1
Interactions between Expansion and Allocation
82
5.4.2
Trade-Offs and Management of Preferences
83
5.4.3
Propagating Preferences, Rescind, and Notifications
84
5.4.4
Variable Time Windows
87
5.5
UI Architecture Overview
87
5.6
LDM PlugIn Behavior
90
5.6.1
Overview
90
5.6.2
SQL Reference LDM PlugIn
90
5.6.3
XML Reference LDM PlugIn
91
6.
Logical Data Model
95
6.1
Introduction
95
6.2
Scope and Goals
95
6.3
Design Overview
96
6.3.1
Classical Hierarchical Decomposition (Inheritance)
96
6.3.2
Prototyping
97
6.3.3
Mixing Inheritance and Prototyping
97
6.3.4
ALP Roles and Capabilities
98
6.3.5
Capabilities via Classical Inheritance
100
6.3.6
Capabilities via Prototyping
101
6.3.7
Roles via Inheritance
101
6.3.8
Roles via Prototyping
102
6.4
LDM Structure
103
6.5
Putting It All Together
104
6.6
Model Evolution
105
6.7
Summary
105
6.8
Logical Data Model Details
105
6.8.1
Implementation Approach
106
6.8.2
Use of Classes and Prototypes to Represent Assets and Capabilities
106
6.8.3
Use of Classes and Prototypes to Define Composite Objects
107
6.8.4
Ship and Aircraft Representative Prototypes
108
6.8.5
Ground Vehicles and Tractors Representative Prototypes
109
7.
References
110

This page is blank intentionally.

Preface

The Project

The Advanced Logistics Project (ALP) is an initiative of the Defense Advanced Research Projects Agency (DARPA). In ALP, DARPA has a vision of a revolutionary, automated logistics system that incorporates leading-edge technologies from a variety of research initiatives and from evolving industry standards. DARPA has authorized a joint venture, called Advanced Logistics Program Integration and Engineering (ALPINE), to develop such a system. The ALPINE venture partners are BBN Technologies and Raytheon Systems. The ALP logistics system uses a modular approach to produce and maintain a Logistics Plan (LogPlan).

The Task

Orchestrating the work of a number of contractors in a research-oriented software development effort is a challenging undertaking. Coordination is complicated by the geographic dispersion and divergent organizational cultures represented by the contributors to the development effort. It is ALPINE’s intent to offer minimal impediments to the production of quality products while fostering a coherent set of research goals and minimizing unnecessary effort.

Purpose of this Document

There are two kinds of development activities on this program: the effort devoted to the infrastructure (e.g., the creation of the invariant pieces of the basic building block, the Cluster) and the effort devoted to the creation of PlugIns that specialize the behavior of a Cluster. ALPINE anticipates that most developers will be producing PlugIns. This document is written to explicate the concepts and facilities available to the developers of PlugIn components for ALP.

This document sets forth the guidelines and specifications to which ALP software developers shall adhere. All interactions between PlugIns and other parts of the larger ALP system shall be through the Application-Program Interface (API) and the Logical Data Model (LDM) specified herein.

Evolving Specifications

The ALPINE team expects that the interfaces and data models presented in this document will evolve as developers produce PlugIns for the ALP system. We encourage developers to propose extensions for review by ALPINE and the ALP community. When consistent and beneficial to the ALP system, these proposals will be adopted.

ALP Development Environment

One major objective of ALP software development is interoperability across computer platforms and operating systems. Thus, we strongly encourage software developers to use Java as the implementation language. Since all ALP system interfaces are implemented in Java, developers will be responsible for any necessary interfaces or bindings to software developed in other languages. Due to demonstration equipment availability limitations, we prefer that all software be tested for compatibility with the latest ALPINE-specified versions of Sun Microsystems’ Java Developers’ Kit (JDK) and the Microsoft NT operating system.

ALP User Interfaces (UIs)

A number of ALP participants will focus on providing general-purpose User Interfaces (UIs) for various ALP users. These UIs will adhere to the ALP UI PlugIn API specifications, and will enable the viewing of ALP data in a variety of formats. While specific debugging aids may be necessary for software development efforts, we encourage ALP developers to leverage these general-purpose UIs to facilitate code debugging and verification. It is important to note that ALP UIs have access only to the ALP LogPlan data contained in each cluster. This requires that all Domain PlugIns must maintain all user-relevant information in the ALP Cluster LogPlan.

Major Revisions in this Manual for Version 5.2

The following are the major changes to this manual for version 5.2:

· Figure 1 revised.

· Figure 10 revised.

· New section, 3.6.4 ThinPlugIn.

· In section 4.1.5 LogPlan Object Overview, new section, "FailedAllocation".

· New section, 4.2.12 Triggers.

· In section 5.1.1 Expander Basics, paragraph 3 is new.

· In section 5.2 Allocator PlugIn Behavior, new paragraph on Allocation on page 77.

· New section, 5.4.3 Propagating Preferences, Rescind, and Notifications.

· New section, 5.5 UI Architecture Overview.

1. Introduction

1.1 Overview

The ALP system is a highly automated system for performing many logistics tasks that are currently performed manually. ALP can receive its directives both from human users and other systems. Directives take the form of task assignments and the policies and rules for carrying out those tasks. For example, users can direct ALP by:

· Requesting logistics support

· Providing the policies that govern logistics support

· Approving assignment of resources where policy dictates user intervention

· Handling requests that could not be fulfilled within established time and cost constraints

In the highly automated ALP system, the users function as monitors, decision makers and moderators, visualizing the current and the future logistics situation, and managing the process by handling problems and exceptions that they or the ALP system identify. Both users and ALP system processes create and examine contingencies (what-ifs) to evaluate the risks and benefits of plan variations, as well as to evaluate the impact of potentially disruptive external events.

1.1.1 ALP Concepts

The ALP system implements a number of concepts such distributed processing, object oriented programming, software agents (“Clusters”), and an organic, evolutionary planning model.

1.1.1.1 Component “Clusters”

The ALP system consists of building blocks of software agents called “Clusters,” which coordinate complex operations involving a large number of logistics activities. Every ALP Cluster implements the same specifications for an external interface using the Java language to ensure portability across many different hardware platforms. Clusters can be tailored with site- or echelon-specific abilities by integrating “PlugIns” for specialized tasks. PlugIns provide domain-specific logistics capabilities and work in a highly distributed environment connected via local and wide area networks.

1.1.1.2 Cluster Community

A Cluster Community is a related group of Clusters that can inter-operate to represent and support real-world organizations such as combat units and their organic support organizations. Interactions among cluster communities is less frequent than interactions among clusters within a community; that is to say that most activity occurs within a cummunity.

1.1.1.3 Cluster Society

The entire collection of Clusters is called a “Society.” The ALP Cluster Society is designed for maximum flexibility and robustness; it is a collection of ALP Clusters whose decisions and actions are local but whose interactions have global impact. Clusters work together to produce the “best” response to requirements given the current condition of the surrounding environment. Large-scale logistics solutions emerge from the interactions of a society of simpler, smaller functional pieces. Clusters can be added and removed from the Society to match evolving real-world logistics demands. By distributing control and data management – to a society of Clusters – the system is better able to handle global stresses: local decisions made by an individual Cluster are the most reliable and the quality of global decisions degrades smoothly as the society is disassociated.

1.1.1.4 Logistics Plan (LogPlan)

The basic function of ALP Clusters is to create and maintain a logistics plan (LogPlan). A LogPlan is a plan that identifies:

· The tasks needed to meet the logistics requirements

· The assets allocated by Clusters to complete those tasks

· The roles played by the allocated assets

· The schedules for completing the tasks

· The "score," or costs associated with performing the tasks

· The policies that dictate how tasks will be preformed

· The alerts that signify combinations of events of interest to a user

The LogPlan evolves and merges seamlessly into a set of directives that can be sent to real-world logistics entities (such as supply depots) in order to enact the plan.

1.1.2 Design Principles

The specification for the ALP system adheres to the following principles:

· Distributed Processing - Clusters and even components of the same Cluster can reside on several computers that communicate over local and wide area networks.

· Independent Interdependence - In many cases, multiple ALP Clusters will be required to respond to each request for logistics support. Each Cluster acts locally, yet each communicates with and affects related clusters.

· Standard Interfaces - Requiring that Clusters adhere to consistent and well-defined interfaces and message formats ensures that Clusters can be replicated within the system with maximum ease.

· Economy of Communications - To avoid communication of large amounts of data among Clusters, the data flow occurs only when and where it must.

· Dynamic Reconfiguration – PlugIns can be dynamically loaded into Clusters as required to provide specific functionality.

· Reusability – The ALP philosophy promotes designing small modular PlugIns with specific functionality that can be dynamically loaded and used in Clusters as required. This re-use of component software lends scalability and extensibility.

· Hybrid Data Modeling – Logistics data is modeled by an object-oriented data structure called the Logical Data Model (LDM), which takes a hybrid approach to representing objects; the LDM can employ both the concept of classes and inheritance and the concept of prototyping, as appropriate.

· Data association - Data in the ALP system is linked to support drill-down and aggregation.

Tasks (such as “provide support for a unit”) are linked to the implied tasks that fulfill that task (such as “provide supplies for a unit”), the assets used in that task (descriptions of the supplies), and exceptions (what supplies are not available). Linkage allows logisticians to retrieve information about tasks and view this information, including assets assigned to the task, and problems associated with completing the task. This drill-down enables logisticians to redefine the requirements or policies in order to resolve the problems.

· Continuous, Event-driven Processing – The ALP system continually plans, executes, and monitors events.

When one cycle of allocating assets to a task is completed, the next cycle is begun. The ALP allocation of assets to tasks is continually and independently assessed within the ALP system. As the results of each allocation cycle are assessed, problems are propagated to parts of the ALP system that control and modify the input assets and tasks, and are further propagated to users as appropriate. Status of real world events that impact assets and schedules are also continually assessed. The ALP system monitors appropriate databases, typically using events or triggers, for changes in the real world. Thus, each cycle of allocating assets to tasks within ALP employs the most up-to-date real world information as well as the results from the previous cycle within ALP.

To the ALP system, the currently executing plan describes the "real-world" current and future state. All "what-if" plans overlay the real-world state as perceived by the Clusters and these what-if plans are independent of each other. What-if plans allow automated plan generation activities to assess the cost of perturbing the current allocation schedule or trade-off alternative approaches for satisfying logistics tasks. For example, if a high-priority what-if task to ship a Patriot battery would cause a real-world C5A transport to forego its scheduled cargo of munitions, a penalty value for overriding a committed resource is aggregated with the increased penalty for late delivery of previously scheduled munitions. This aggregated penalty indicates the total cost of the planned action. In this way, the ALP system and users can assess individual objectives with respect to various commitments without perturbing the real-world state.

· Planning Evolves into Execution - ALP supports seamless transitions between planning and execution.

ALP continually schedules requests for support from the present into the future and issues appropriate orders to fulfill those requests. As time passes, the orders to do something in the future (planning) become orders to do something today (execution). As execution time nears, an increasing penalty is imposed for modifying these orders to prevent unwanted gyrations in scheduled events.

2. ALP Clusters and Cluster Society

The ALP system consists of building blocks called Clusters that inter-operate in a Cluster Society. Clusters are designed to follow a standard that allows reusability, scalability, and extensibility. The Cluster Society acts as an organic entity, continually reacting and adapting as planning evolves into execution.

2.1 A Prototype ALP Cluster

Figure 1 shows the components of an ALP Cluster. Each Cluster contains a set of basic components and a set of specialized “PlugIns” that provide unique logistics capabilities to the Cluster. A Cluster can communicate with other Clusters over local and wide area networks. The basic function of ALP Clusters is to create and maintain a logistics plan (LogPlan), with each Cluster maintaining its portion of the LogPlan for the tasks that it has been assigned to complete.

[image: image1.wmf]Allocation results

and Scores

Incoming

Directives

Outgoing

Directives

User

generated

directives

Orders

PlugIn

PlugIn

 Roles

Support

Materiel

Infrastructure

e

...

Assets

Brake Pads

Containers

People

Units

...

Real World

Data

Weather

Intelligence

Geographic

...

Directives

Task

Policy

Notification

Order

...

Phased

Tasks

with

Assigned

Roles

Allocated

Assets

with

'Plan'

Time

LogPlan

 Data

External

Log Data

PlugIn

Allocator

PlugIn

Assessor

PlugIn

Expander/

Aggregator

Dynamic

Updates

!

Alerts

Figure 1: ALP Cluster

The external actors on ALP Clusters (ultimately, a J3 component) communicate their requirements and policies to ALP Clusters via “Directives.” Clusters also interact with each other by sending and receiving Directives. Directives communicate policies, requirements, or tasks to other Clusters and provide feedback about the progress and cost (score) of satisfying these requests. For example, one Cluster may request a repair part from a Cluster that maintains an inventory of those parts. Directives also can be “orders,” that provide direction to a system external to ALP. For example, an ALP Cluster may initiate the generation of a material release order (MRO) by sending information to the appropriate external system. Directives can also be “notifications” that provide feedback for the associated allocations produced by the Cluster. This feedback enables the Cluster originating the Directive to continually evaluate its defined allocation.

2.1.1 Standard PlugIn Behaviors

The Expander, Aggregator, Allocator, and Assessor PlugIn types behave the same in all Clusters. Together, these PlugIns continually process tasks, while LDM PlugIns continually monitor real-world data that can impact the Cluster. Briefly, these PlugIn types are as follows:

· Expander – The Expander expands a specified Task (requirement) into implied tasks (if necessary) which then can be fulfilled by the Allocator.

· Aggregator – The Aggregator aggregates incoming Tasks into an implied task.

· Allocator - The Allocator continually allocates assets to the expanded tasks and populates the LogPlan with the results of the allocation.

The Allocator maintains an “optimal” schedule or allocation as the state of assets and the set of tasks evolve with changing world conditions.

· Assessor - The Assessor continually monitors the LogPlan, the assumptions required for the execution of the LogPlan, and the score associated with each scheduled allocation.

The Assessor measures these penalties and assumptions against specified thresholds and objectives, and initiates ALP actions when these expectations are not satisfied. The Assessor can register to receive notifications of changes in the real world, i.e., the status of environmental conditions and other world-state data that may influence the decisions and actions of a particular Cluster.

Note that a Cluster can have either or both of an Expander and an Aggregator; both are not required.

Clusters and PlugIns can register to obtain changes to the information they require to satisfy their responsibilities.

2.1.2 PlugIns Tailor Cluster Agents

As shown in Figure 2, a generic Cluster "shell" provides the framework for PlugIns that supply all the domain-specific functionality for the Cluster’s specific role in the ALP Society.

[image: image2.wmf]Allocator

Supply

PlugIn

Maintenance

PlugIn

Assessor

Supply

PlugIn

Maintenance

PlugIn

Transportation

PlugIn

Support

Unit

Cluster

Data

JTAV

TC AIMS II

GTN

User Interface

Supply

PlugIn

Maintenance

PlugIn

Transportation

PlugIn

Supply

PlugIn

Maintenance

PlugIn

Expander

Transportation

PlugIn

Transportation

PlugIn

Figure 2: ALP Cluster and Sample PlugIns

More than one PlugIn may be dynamically loaded within a Cluster as required. This allows the Cluster to perform on multiple levels (command of subordinates and control of its assets at the same time), as well as optimizing over multiple domains (transportation and procurement). User Interface PlugIns are employed by user interfaces to access and process domain specific information within the Cluster. LDM PlugIns are a key element of the Cluster, providing access to data sources external to the ALP system.

2.2 ALP Cluster Society

The collection of all ALP Clusters is called the ALP Cluster Society. The ALP Cluster Society represents force organizations and their associated logistics support. Clusters can be configured to support different force and logistics relationships. Figure 3 shows an example of a portion of the Cluster Society that represents a simple, hierarchical force organizational structure.

[image: image3.wmf]Service Directive

Service

Provider

Service

Consumer

Command Directive

Comm-

ander

Combat

HQ-1

Support

HQ-1

Combat

Unit

Combat

Unit

Maint

Unit

Supply

Unit

Trans

Unit

“Provide Support”

“Provide transport support”

Notification

“Transport request”

Notification

Schedule

Feedback

Peer

Relationships

Figure 3: Simple Cluster Society

2.2.1 Representation of Real-world Entities

ALP Clusters may represent specified Joint Operations (J3) OPLAN components (combat unit and organic support forces) or those instantiated by the ALP system to support logistics operations (“below the line” forces). A single ALP Cluster may represent an organization, but a more common approach is that a group of ALP Clusters, called a Cluster Community, will work together to support a single organization.

Combat Unit Clusters represent the combat unit organizations specified in the J3 OPLAN. These Clusters represent the source of anticipated and actual requests for materiel and support for those forces. Some Service Provider Clusters represent organic support organizations specified in the J3 OPLAN. These Clusters represent the support organizations and functionality provided as part of a combat organization. Other Service Provider Clusters represent “below the line” forces and the additional support organizations necessary to support the combat units and organic support units. The specification of actual units to fulfill these requirements is determined by the society of ALP Clusters. The requirements for the “below the line” support units are developed as a result of the anticipated and actual demands from the Combat Unit Clusters.

2.2.2 Interaction with Real-world Entities

As shown in Figure 3, a society of Clusters supports real-world organizations comprising commanders, providers and requesters. Commanders can direct a provider to perform certain support activities. The providers respond with a penalty associated with performing that function. Requesters send specific support directives to the providers. The providers respond with assigned resources to satisfy that request and may generate an exception indicating the request could not be satisfied. Providers can also act as requesters when they require support from another provider.

2.2.3 Society Awareness and Formation

The large size and diversity of the ALP problem requires that the ALP Society be relatively self generating and self regulating. Our design goal focuses on the preservation of the autonomous and distributed nature of the ALP Society without adopting techniques that could impose scalability constraints, such as a centralized broker would impose. Our solution naturally preserves command and control relationships through a defined sequence of peer-wise messages between Society entities. The Society network and entity relationships are established by propagating requirements “up” through the Society network and allocating assets “down” (including organization assets) through the Society network. To manage Society awareness and formation, one can imagine a classic broker based system, where a centralized “Cluster Broker” registers the capabilities of clusters and locates clusters with suitable capabilities when one cluster seeks another with specific capabilities. While a mechanism such as this could be utilized, it is sub-optimal with respect to a large, distributed agent system.

The entire Society is built from three basic operations:

· Establishing pair-wise superior <‑> subordinate relationships

· Dynamic determination and assignment of a support relationships

· Dynamic reassignment of command relationships

For simplicity of description, this document associates a single organization with a specific cluster. However, the ALP architecture is expected to support the association of multiple organizations with a single cluster.

2.2.3.1 Superior-Subordinate Relationships

Each cluster is bootstrapped with a single piece of non-local information, the ID of its superior. This information is pre-provisioned with each cluster. On startup, the cluster contacts its superior and provides an enumeration of all its capabilities. Basically, it transfers a copy of itself as an AssetAssignment message. It is the subordinate cluster’s responsibility to update this capability list if its intrinsic capabilities change. The superior cluster should respond with the “principal directive” for this cluster (and all its subordinates), e.g. GetLogSupport task, which means “start doing your job.” Typically, this task includes references to the “operations plan” and other information that define the subordinate cluster’s responsibilities. The superior cluster can update this information to change or add subordinate cluster responsibilities. While an organization can have only one superior for a given time period, superior-subordinate relationships are time phased, as are other relationships.

[image: image4.wmf]Superior

Subordinate

3: GetLogSupport

2: AssetAssigment

1: ReportForDuty

Figure 4: Superior‑Subordinate Relationship Establishment

PlugIns within the clusters react to and generate the following sequence of events as illustrated in
Figure 4.

1. The ALPINE OrgDataPlugIn generates the ReportForDuty task internal to the subordinate. At initialization, this PlugIn creates an organization asset of itself and an organization asset of its superior and enters these assets into the local LogPlan.

2. The ALPINE OrgReportPlugin allocates the ReportForDuty task to its superior which results in an AssetAssignment message. This process results in the transfer of an organization asset (of the subordinate) to the superior cluster which enumerates the subordinate’s capabilities.

3. The ALPINE GLSAllocatorPlugIn in the superior generates a GetLogSupport task for the subordinate in response to receiving a subordinate organization.

2.2.3.2 Supported‑Supporting Relationships

Establishment of a support relationship will be illustrated with a simple 3-cluster community as illustrated in Figure 5. This simple community comprises a superior cluster (Cluster A), a supported cluster (Cluster B), and a supporting cluster (Cluster C). We assume that the superior-subordinate initialization outlined above has previously taken place. While Cluster A is the superior of Cluster B and Cluster C in this example, Cluster A does not have to be the superior of Cluster B, but only designated as the organization that Cluster B uses to request support. Thus, the superior cluster knows the identities and capabilities of all its direct subordinates, and, more generally, the aggregated capabilities of all subordinates. Establishment of a support relationship may be initiated either by the superior cluster based on a priori rules and/or procedures or by a request for support from a subordinate. Assuming that the request initiates with the soon to be supported cluster (Cluster B), the following sequence establishes this support relationship.

[image: image5.wmf]Cluster A (2)

Cluster C

Cluster B

1

4

6

5

3

Figure 5: Supporting‑Supported Relationship Establishment

4. Cluster B (Supported) sends request for specific support capabilities to Cluster A (superior), typically using the SupportRequest task.

5. Cluster A determines that Cluster C (supporting) can fulfill requirement and assigns (allocates) support role to Cluster C. Cluster A selects a subset of cluster C’s capabilities to authorize for use by cluster B.

6. Cluster A sends a ReportForService task to Cluster C authorizing Cluster C to advertise a specified set {x,y,z} of Cluster C’s capabilities for use by Cluster B.

7. Cluster A sends an AllocationResult notification associated with the SupportRequest task (1) to Cluster B acknowledging that the request will be satisfied by Cluster C. However, no capabilities are specified in this message. Cluster B must wait for the asset transfer of an organization asset from Cluster C before any allocations can be made.

8. Cluster C transfers an organization asset to Cluster B (as an AssetAssignment directive) with a specific subset of capabilities {x,y,z} that Cluster B is authorized to use. This action is in response to the ReportForService task from Cluster A.

9. Cluster B begins allocating tasks to Cluster C after the organization asset of Cluster C is added to its LogPlan.

Cluster C (supporting) is required to notify and update any supported cluster (B) with an initial or revised set of capabilities as directed by Cluster C’s superior. This asynchronous event sequence provides both the mechanism for reallocating support as well as eliminating possible race conditions on initial assignment (Cluster B cannot allocate tasks to Cluster C until it receives a message from both Cluster A and Cluster C). In addition, the supported (Cluster B) can compare the information from the AllocationResult (4) and the received organization asset (from Cluster C) to prevent spoofing from rogue clusters (as both messages would have to include an identical cluster identifier for Cluster C).

2.2.3.3 Reassignment of Organization Assets

Organizations, with their associated capabilities, are treated as assets within the ALP Society. In general, owners of assets (clusters or otherwise) may transfer their assets to other clusters with which they have a relationship (command or support). Of course, ownership is a time-phase notion and can be re-assigned (re-allocated) by the originator of the assignment at any time. Consider the initial state of a 3-cluster community similar to Figure 5, but with an additional supporting organization (Cluster D) that is owned by Cluster A. Figure 6 illustrates the structure of this community.

We wish to transfer a supporting organization (Cluster D) to “plus-up” a supporting organization that is heavily utilized. As a result of this transfer, Cluster D will report to Cluster C and treat Cluster C as its superior for a specific time period. Note that this transfer and concept of ownership is different than the previously describe customer-provider relationship.

[image: image6.wmf]Cluster C

Cluster B

Cluster D

1: Task

2: SupportRequest

5: AllocationResult

6: AssetAssignment

4: ReportForDuty

3: Allocation Process

7: Task

Cluster A

Figure 6: Reassignment of an Organization Asset

10. Cluster B tasks Cluster C for support. Cluster C’s ability to provide support is exceeded

11. Cluster C sends a SupportRequest task to Cluster A requesting additional resources.

12. Cluster A determines that one of its assets, Cluster D, should be transferred to Cluster C so that Cluster C can meet its requirements.

13. Cluster A sends a ReportForDuty task to Cluster D indicating that Cluster D should report to Cluster C as its superior for a specific time period.

14. Cluster A sends an AllocationResult notification to Cluster C associated with the SupportRequest task informing Cluster C that Cluster D will be reporting to it as a subordinate.

15. Cluster D responds to the ReportForDuty task by generating an AssetAssignment directive to Cluster C. The AssetAssignment transfers an organization asset (representing Cluster D) to Cluster C indicating that it will be a subordinate to Cluster C.

16. Cluster C can now task Cluster D and share the burden of the tasks that Cluster C receives. Cluster C can also instruct Cluster D to “report for service” as a provided to specific customers.

2.2.3.4 Summary

The ALP Society is organized and built by the successive application of the three basic organizational operations. These operations provide for the local establishment of command relationships and the determination of subordinate’s capabilities, establishment of support relationships, and transfer of command authority. In the above examples, the “superior” cluster may, in general, represent several layers of command before a common command cluster is reached. The allocation and assignment proceed as outlined above, establishing support cross links at each layer of the Society. In cases where the requests and allocation transcend levels of command clusters, the relationship operations proceed as described with general or aggregated capabilities rather than specific or detailed capabilities.

3. PlugIn Basics

PlugIns are the essential “compute engines” of the Clusters, and most of the effort of contributors to the ALP program consists of the development of PlugIns. This section presents the information necessary for the development of PlugIns.

3.1 Definition and Function

PlugIns are self-contained elements of software that can be loaded dynamically into Clusters. PlugIns interact with the Cluster infrastructure according to a set of rules and guidelines and through a defined API. PlugIns communicate only with the Cluster infrastructure, reacting to LogPlan events and publishing results to the LogPlan. PlugIns are unaware of other PlugIns, and therefore cannot be dependent on the presence of other PlugIns. PlugIns may be specialized by domain and echelon so that a Cluster operating in a specific domain and echelon context will use only those PlugIns that are relevant and specific to its operation. In this way PlugIns bring functionality to the Cluster, while the society of Clusters provide structure and order.

A PlugIn must be a JavaBean and utilize defined Bean naming conventions for properties and methods. We expect that PlugIn developers will deliver their PlugIns in “jar” files following standard Java conventions. PlugIns can “wrap” legacy software and applications developed in non-Java languages to conform to ALP interface specifications. However, we encourage all new development to use Java to promote portability.

PlugIns may extend the “Essential” PlugIn class (EssentialPlugIn.java) or other provided base classes to implement the basic PlugIn functionality. For convenience, the Expander, Aggregator, Allocator and Assessor are types of PlugIns that are also referred to as “Domain” PlugIns, but these terms have no meaning in class or interface hierarchies.

3.2 High Level View of PlugIn Operations

This section provides a high level view of PlugIn operations within a Cluster and provides the context for understanding the remainder of this document. The details of PlugIn interfaces and interactions are discussed in later sections.

Figure 7 is a linear presentation of Cluster and PlugIn activity as the Cluster processes a single Task. PlugIn developers should focus on the PlugIns that are shaded in the figure.

17. The Cluster receives a Task. An Expander PlugIn that has a subscription matching the Task is notified.

18. The Expander PlugIn processes the incoming Task and generates a Workflow (a set of subtasks that must be accomplished in order to accomplish the input Task).

19. The Expander PlugIn creates a PlanElement that contains the incoming Task and the Workflow it created. The Expander PlugIn publishes the PlanElement in the LogPlan.

20. The Cluster notifies all PlugIns that have subscribed to this new LogPlan element. In this example, the Allocator PlugIn has a subscription matching the new LogPlan element and is notified. The Cluster also publishes all Workflow subtasks, which notifies PlugIns that are subscribed to specific tasks.

21. The Allocator PlugIn allocates assets among all the tasks that have been expanded, both those in the newly created Workflow and the tasks from any previous Workflows.

22. The Allocator PlugIn creates PlanElements, each of which contain a Task and the Task’s Allocation. An allocation may assign physical assets to accomplish the Task, or it may assign the Task to another Cluster. The Allocator PlugIn publishes the Plan Elements in the LogPlan.

23. The Cluster infrastructure sends Tasks allocated to other Clusters to those Clusters.

24. The Assessor reviews the allocations made by the Allocator.

25. The Assessor can send Directives to the Cluster that originated the task, if the allocation score exceeds a specified threshold and action external to this Cluster is required.

[image: image7.wmf]Time

Cluster

Boundary

Cluster

Boundary

Expander

PlugIn

Allocator

PlugIn

LogPlan

1

2

3

5

D

e

c

e

m

b

e

r

6

7

Assessor

PlugIn

9

8

4

Figure 7: PlugIn Operation Flow

3.3 Example: Details of PlugIn Operations

This example provides a more detailed view of PlugIn operations by illustrating how a specific task is handled by the PlugIns in a particular Cluster.

Suppose that J3 personnel direct the J4 to “move and support the Third Infantry Division (3rd ID).” J4 personnel input this as a Task to an ALP Cluster, and this Task is expanded, possibly by several Clusters, into all the Tasks required to move and support the 3rd ID. At some point, a Cluster receives a Task to “move 15 tanks.” The following paragraphs describe in detail, how the “move 15 tanks” Task is handled by that Cluster’s PlugIns. (We are not concerned here with how the initial “move 3rd ID” Task is entered or how the Clusters derived the “move 15 tanks” Task from the original “move 3rd ID” Task. This explanation is simply to set the stage for the detailed explanation that follows.)

The Cluster receives the “move tanks” Task and adds it to the LogPlan. The Expander PlugIn that has registered to receive this type of Task is notified.

The Task, which is much like a structured sentence, contains the following attributes:

Verb=Transport

Asset=tanks

Preferences: (desired delivery date)

START_DATE, Scoring Function = StrictlyAt(7)

END_DATE, Scoring Function = StrictlyAt(9)

Schedule Best Date=9

Prepositional Phrases:

From Location=Atlanta

To Location=Savannah

The Expander PlugIn creates a Workflow for this Task (a Workflow is simply a set of derived Tasks that must be completed in order to complete the original Task). The Expander PlugIn may use its knowledge base to determine how to expand the Task into derived Tasks. For example, this Workflow might be created for the Task:

Workflow

Task="Schedule vehicles to transport tanks”

Task="Schedule drivers to drive transport vehicles”

Task="Fuel transport vehicles”

The Expander PlugIn creates a PlanElement containing the original Task and the newly created Workflow, and enters this PlanElement in the LogPlan. The Workflow is the product of the Expander PlugIn.

The Allocator PlugIn continually allocates assets to the Tasks in Workflows. The Allocator PlugIn collects all the Tasks from Workflows in the LogPlan, including Tasks for which assets were already allocated. The previously allocated Tasks may include unrelated Tasks that compete for the same assets, such as “schedule vehicles to transport 32 tanks from Atlanta to Savannah starting at day 4 and ending at day 8.”

The Allocator PlugIn should analyze all Workflow subtasks on each processing iteration as previous allocations of assets may have to be modified in order to accommodate the new subtasks. The Allocator PlugIn must allocate its assets over all the subtasks combined, both Tasks for which it has already allocated assets and new Tasks, to determine the “best” solution. For example, the Allocator PlugIn may have 10 HETs (Heavy Equipment Transporters) that it planned to move the 32 tanks from Huntsville to Savannah. The Allocator PlugIn must now determine how to also move the 15 tanks from Atlanta to Savannah on an overlapping schedule. It has two alternatives: it could transport both sets of tanks, but possibly not within the desired schedule, or it could allocate a Task to another Cluster to move some of the tanks.

The Allocator PlugIn obtains information from several sources. First, the Allocator must know what assets it can assign to the job. How many HETs does it have? To what other Clusters (representing other HET units) can it assign the job of transporting the tanks? Each Cluster is assigned assets that it can use to perform its tasks. The Allocator PlugIn can retrieve a list of available assets through the LogPlan (supported in the Cluster infrastructure). Assets consist of physical assets (in this case, HETs) and organization assets (in this case, Clusters representing HET units).

The Allocator PlugIn must also have other information in order to schedule moving the tanks. For example, how many tanks can one HET move? What is the capacity of road segment #423 that might be used by an HET going from Huntsville to Savannah or from Atlanta to Savannah? This information is represented as attributes of the cluster’s assets, and is obtained from external databases by the LDM PlugIns. The Allocator PlugIn obtains this information via the Asset attributes.

Finally, the Allocator PlugIn computes an allocation (assets, schedule and score) for each Task and the PlugIn writes each Allocation in the LogPlan. The Allocator PlugIn also computes a score for each Preference in the Task.

For example, after the Allocator PlugIn created its Expansions and Allocations, the LogPlan might contain the following information:

Task

schedule vehicles to transport 32 tanks from Huntsville to Savannah

Asset

16 HETs

Schedule
leave Huntsville on day 1, arrive in Savannah on day 10

Task

schedule vehicles to transport 15 tanks from Atlanta to Savannah

Asset

8 HETs

Schedule
leave Atlanta on day 3, arrive in Savannah on day 9

Independently of either the Expander or the Allocator, the Assessor continually monitors the LogPlan as well as real-world events that could affect plans. The Assessor PlugIn compares the scores in the LogPlan with an exception threshold; when scores exceed this threshold, the Assessor PlugIn initiates corrective action.

3.4 Data Access

As mentioned above, the PlugIns obtain the data they need to make decisions through the objects comprising the LogPlan. These objects and their properties are defined by the Logical Data Model and implemented by LDM PlugIns. LDM PlugIns typically query external databases using queries defined in external query files. Using the results of the database queries, the LDM PlugIns construct asset objects and their attributes. For example, an LDM PlugIn might query a database on transportation resources to determine the number of HETs available on specified dates, and the tank-carrying capacity of those HETs. Using the information returned, the LDM PlugIn constructs objects representing the HETs and enters them in the LogPlan as the Cluster’s assets. PlugIns access these assets through the Cluster’s LogPlan. Figure 8 illustrates this flow.

[image: image8.wmf]Request

PlugIn

LogPlan

 Assets

Attributes

LDM

PlugIn

Data

Request

Contemporary

Data

Source

Data

Figure 8: Logical Data Model and LDM PlugIns

3.4.1 LDMServesPlugIn

PlugIns access assets and PlanElements through the local Cluster LogPlan. These objects are defined by the ALP Logical Data Model (LDM) and created through object factories provided by the Cluster infrastructure. Access to LDM factories and the functionality to create LDM objects is provided through the "alp.ldm.LDMServesPlugIn" interface. PlugIn base classes delegate to the convenience methods provided by this interface.

Interface alp.ldm.LDMServesPlugIn

public interface LDMServesPlugIn

LDM Component Interface.

See Also:

 LDMPlugInServesLDM

Method Index

 cachePrototype(String, Asset)

 Request that a prototype be remembered by the LDM so that getPrototype(aTypeName) is likely to

 return a Prototype without having to make calls to PrototypeProvider.getPrototype(aTypeName).

 getLdmFactory()

 expose the LDM factory instance to consumers.

 getPrototype(String)

 find the prototype Asset named by aTypeName.

 isPrototypeCached(String)

 is there a prototype with the specified name currently in the prototype cache?

 registerAsset(Asset)

 Notify LDM of a newly created asset.

Methods

cachePrototype

 public abstract void cachePrototype(String aTypeName,

 Asset aPrototype)

 Request that a prototype be remembered by the LDM so that getPrototype(aTypeName) is likely to

 return a Prototype without having to make calls to PrototypeProvider.getPrototype(aTypeName). Note

 that the lifespan of a prototype in the prototype registry may be finite (or even zero!). This method does

 NOT call registerAsset.

isPrototypeCached

 public abstract boolean isPrototypeCached(String aTypeName)

 is there a prototype with the specified name currently in the prototype cache?

getPrototype

 public abstract Asset getPrototype(String aTypeName)

 find the prototype Asset named by aTypeName. This service will actually be provided by a

 PrototypeProvider via a call to getPrototype(aTypeName). It will return null if no prototype is found

 or can be created with that name. There is no need for a client of this method to call registerPrototype

 on the returned object (that task is left to whatever prototypeProvider was responsible for generating

 the prototype). Some future release might want to throw an exception if not found.

registerAsset

 public abstract void registerAsset(Asset anAsset)

 Notify LDM of a newly created asset. This is generally for the use of LDMPlugIns, but others may use

 it to request that propertygroups of the new Asset be filled in from various data sources.

getLdmFactory

 public abstract LdmFactory getLdmFactory()

 expose the LDM factory instance to consumers. LdmFactory is used to construct all Assets and

 plan objects.

 Returns:

 LdmFactory The factory object to use in constructing LdmObjects.

Example:

LDMServesPlugIn ldm = getLDM();

 // to get a prototypical Passenger instance:

 Asset passenger = ldm.getPrototype("OTHER/Passenger");

 // to get information about a particular object by NSN:

 Asset helicopter = ldm.getPrototype("NSN/1520011069519");

3.4.2 LDMPlugInServesLDM

LDM PlugIns should implement the interface "alp.plugin.LDMPlugInServesLDM" in order to have access to the necessary interfaces within the Cluster architecture. This interface acts as a marker class for the PlugIn. The usual method of implementing this interface is through the "alp.plugin.PrototypeProvider" and "alp.plugin.PropertyProvider" interfaces (either, or, or both).

3.4.2.1 PrototypeProvider

This interface extends the class LDMPlugInServesLDM. In order to fulfill the contract of this interface, the extending LDM PlugIn must implement the Asset getPrototype(String) method. A null should be returned if the Asset is not recognized by the LDM PlugIn. Calls to LDMServesPlugIn.registerPrototype() and LDMServesPlugIn.registerAsset() should be called before returning the Asset (see alp.ldm.LDMServesPlugIn for more information). Access to LDMServesPlugIn should be provided through the Cluster.

package alp.plugin;

import alp.ldm.asset.Asset;

import java.util.Enumeration;

/**

 * A provider of prototype Assets to the LDM.

 * @see alp.plugin.LDMPlugInServesLDM

 * @author ALPINE <alpine-software@bbn.com>

 **/

public interface PrototypeProvider extends LDMPlugInServesLDM {

 /** return the prototype Asset described by aTypeName.

 * implementations should probably call LDMServesPlugIn.registerPrototype

 * and LDMServesPlugIn.registerAsset if needed before returning.

 *

 * May return null if aTypeName is not something that the implementation

 * knows about.

 *

 **/

 Asset getPrototype(String aTypeName);

}

3.4.2.2 PropertyProvider

This interface extends the marker class LDMPlugInServesLDM. In order to fulfill the contract of this interface, the extending LDM PlugIn must implement the registerAsset(Asset) method. If the Asset is not recognized by the LDM PlugIn, it should be ignored.

package alp.plugin;

import alp.ldm.asset.Asset;

import java.util.Enumeration;

/**

 * A provider of Asset Properties to the LDM.

 * @see alp.plugin.LDMPlugInServesLDM

 * @author ALPINE <alpine-software@bbn.com>

 **/

public interface PropertyProvider extends LDMPlugInServesLDM {

 /** Notify provider about a newly created asset.

 *

 * Should ignore assets which we know nothing about.

 *

 * Should block for as short a time as possible, perhaps

 * using fancy "future" propertygroups, etc.

 **/

 void registerAsset(Asset anAsset);

}

3.4.3 Responding to Cluster LDM Requests

When you instantiate an LDM PlugIn extending PropertyProvider and/or PrototypeProvider, you should pay close attention to the proper implementation of the Asset getPrototype(String)and registerAsset(Asset) methods. Because the Cluster recognizes these PlugIns when they are loaded, all requests for Prototypes and registration of Assets (PropertyGroup population) made within the Cluster will be first sent to the PropertyProvider or PrototypeProvider implementors (i.e. the LDM PlugIn). It is unlikely that any one LDM PlugIn will have special knowledge about all possible Assets, so the PlugIn should ignore any calls to registerAsset(Asset) where the Asset is unrecognized, and should return null when getPrototype(String) is called with an unrecognized "String (TypeIdentification)" value.

3.4.4 LDM PlugIn Data Access

In order to complete the task of creating Prototypes and PropertyGroups and and adding them to the LogPlan, the LDM PlugIn must rely on some sort of data source for information regarding Asset creation. Two examples of data source handling are static and dynamic data retrieval.

3.4.4.1 Static Data Retrieval

An LDM PlugIn using static data (such as the reading of an XML file), simply parses its data source one time at startup and populates the Cluster with the requested LDMObjects. At this point, the LDM PlugIn is only available for calls to registerAsset(Asset) and getPrototype(String), and these will only be useful if the requested Assets are in the PlugIn's repertoire.

3.4.4.2 Dynamic Data Retrieval

Using dynamic date retrieval, an LDM PlugIn can fulfill the same tasks as an LDM PlugIn using static data, but can also provide "real time" updates to LDM objects it has created. For example, after using a live database to create an Asset (such as a Truck), the LDM PlugIn can watch that same data source for relevant updates to that Truck, and make the necessary changes. There are no examples of this implemention yet.

3.4.5 LdmFactory

LdmFactory is a class which can construct instances of all of the complex LDM objects, including Assets and Plan objects (previously called ClusterObjects).

Most Asset-related factory methods have two forms:

· Methods which require specification of a class will take either a String naming the Class without the package prefix or a Class instance. The following two lines produce the same result:

createAsset("Organization");

createAsset(alp.ldm.asset.Organization.class);

· Methods which take a prototype Asset will accept either the prototype asset instance itself or the prototype asset's type identifier (but only if registered!). The following are equivalent:

createInstance("NSN/1520011069519", "312497");

// vs.

createInstance(getPrototype("NSN/1520011069519"), "312497");

package alp.ldm;

public class LdmFactory {

 // factories for all Plan objects

 NewTask newTask();

 NewWorkflow newWorkflow();

 // etc.

 // factories for all Asset objects

 /** Create a raw Asset instance for use by LDM Plugins

 * which are PrototypeProviders.

 * The asset created will have *no* propertygroups.

 * This *always* creates a prototype of the specific class.

 * most plugins want to call getPrototype(String typeid);

 *

 * @param classname One of the defined LDM class names. This must

 * be the actual class name without the package path. For example,

 * "Container" is correct, "alp.ldm.asset.Container" is not.

 **/

 Asset CreateAsset(String classname);

 Asset createAsset(Class assetClass);

 /** convenience routine for creating prototype assets.

 * does a createAsset followed by setting the TypeIdentification

 * to the specified string.

 **/

 Asset createPrototype(String classname, String typeid);

 Asset createPrototype(Class assetclass, String typeid);

 /** Create an instance of a prototypical asset. **/

 Asset createInstance(Asset prototypeAsset);

 /** Create an instance of a prototypical asset as named by TypeId **/

 Asset createInstance(String prototypeAssetTypeId);

 /** Create an instance of a prototypical asset, specifying an initial

 * UniqueID for its itemIdentificationProperty

 **/

 Asset createInstance(Asset prototypeAsset, String uniqueId);

 Asset createInstance(String prototypeAssetTypeId, String uniqueId);

 /** Create an aggregate asset instance of a prototypical asset.

 **/

 Asset createAggregate(Asset prototypeAsset, int quantity);

 Asset createInstance(String prototypeAssetTypeId, int quantity);

 /** create a new property group, given a PropertyGroup name.

 * The name should not have any package prefix and should

 * be the cannonical name (not the implementation class name).

 **/

 Property createProperty(String propertyName);

 Property createProperty(Class propertyClass);

 /** @return a copy of another property group **/

 Property createProperty(Property originalProperty);

}

Note: future releases will deprecate the use of the LdmFactory interface and nomenclature.

3.4.6 Example of LDM PlugIn Code

Follows is an example of the LDM Plugin code which constructs a prototypical asset.

 LDMServesPlugIn ldm = getLDM();

 LdmFactory ldmf = ldm.getLdmFactory();

 // create the prototype asset

 Asset prototype = ldmf.createPrototype("UTC/CombatOrg", "CombatOrganization");

 // allow other LDM plugins (PropertyProviders) to fill in detailed information

 ldm.registerAsset(prototype);

 // ask the LDM to cache it so we don't get called again to (re)construct it

 ldm.cachePrototype("UTC/CombatOrg", prototype);

Another (or the same) PlugIn can create an instance of the prototype:

 // ask the ldm to find or create the prototype

 Asset proto = ldm.getPrototype("UTC/CombatOrg");

 // create the instance

 Asset org = ldmf.createInstance(proto, "UIC/WAQJ");

 // set the human-readable name

 ((NewItemIdentificationProperty)org.getItemIdentitificationProperty()).setNomenclature("3rd Infantry Division");

 ((NewItemIdentificationProperty)org.getItemIdentitificationProperty()).setAlternateItemIdentification("3ID");

A PlugIn can create aggregate assets:

 Asset ninehelicopters=ldmf.createAggregate("NSN/1520011069519", 9);

3.5 PlugIn State Transitions

PlugIns may be dynamically loaded, run, and unloaded during Cluster execution. These capabilities are supported by the Generic PlugIn interface. PlugIns are initialized in distinct phases as described in detail below. After initialization, the PlugIn may interact with the LDM and the Cluster.

PlugIns are created and initialized with the following method calls:

26. The PlugIn instance is created.

27. The plugin.initialize(arguments) method is called on the new instance to pass any required dynamic arguments to the new plugin instance. At this point, the PlugIn should be in the UNLOADED state.

28. The plugin.load(ClusterIdentifier) method is called to notify the PlugIn of it's cluster context and to transition its state to LOADED.

29. The plugin.start() method is called to allow the new PlugIn to start any threads of execution it needs. The PlugIn's start method will invoke plugin-specific startup and execution code, as determined by the plugin's base class (see section 3.6 PlugIn Base Classes for descriptions).

For example, the following code is executed to initialize "myExpanderPlugin”:

Object arguments = ...;

ClusterIdentifier myCluster = ...;

PlugInServesCluster = new myExpanderPlugin(); // reflection API

plugin.initialize(arguments); // UNLOADED

plugin.load(myCluster); // LOADED

plugin.start();

Note that the plugin state transition methods are fully implemented in the standard plugin base classes and must be executed for proper plugin functionality. Only the PlugIns extending EssentialPlugIn need to override any state transition method.

public interface GenericStateModel

GenericStateModel interface. This is the interface that defines state transitions for clusters and plugins.

 Variable Index

 ACTIVE

 possibly doing work

 IDLE

 forbidden from doing new work, but may be reactivated

 LOADED

 attached to a cluster

 UNINITIALIZED

 UNINITIALIZED state - should never be returned by getState()

 UNLOADED

 initialized but not yet attached to an enclosing object

 Method Index

 getState()

 Return the current state of the object: LOADED, UNLOADED, ACTIVE, or IDLE.

 halt()

 Called object should transition from ACTIVE to the LOADED state.

 initialize()

 Initialize and transition from undefined to UNLOADED state.

 load(Object)

 Notify object about its "parent" Object should transition to the LOADED state.

 resume()

 Called object should transition from the IDLE state back to the ACTIVE state.

 start()

 Called object should start any threads it requires, transitioning to ACTIVE state.

 stop()

 Called object should transition from the IDLE state to the LOADED state.

 suspend()

 Called object should pause operations in such a way that they may be cleanly resumed or the object can be unloaded.

 unload()

 Called object should perform any cleanup operations and transition to the UNLOADED state.

The suspend, resume, halt and stop methods provide the Cluster and components with the ability to pause, resume and stop the operation of PlugIns. The state transition diagram illustrates the general behavior expected for each of the methods in the generic PlugIn interface.

[image: image9.wmf]Loaded

Active

Unloaded

load

suspend

unload

start

resume

Idle

stop

halt

initialize

Figure 9: State Transitions

Table 1 defines the PlugIn states.

State
Condition

UNLOADED
PlugIn has been created and initialized, i.e. the plugin.initialize method has been called.

LOADED
The plugin.load method has been called.

ACTIVE
The plugin.start method has been called and the PlugIn has started its active threads, if any.

IDLE
This state is the suspended mode of a PlugIn, regardless of whether it was running or serving, with all its threads of execution brought to a non-executing state that could be restarted with the resume method.

Table 1: PlugIn States

Table 2 defines the behavior that must be implemented in the generic PlugIn methods by the PlugIn.

Method
Behavior

initialize
Initialize PlugIn.

load
Initialize Cluster context.

unload
Perform any cleanup operations; transition to UNLOADED state.

start
Transition to the appropriate ACTIVE state.

halt
Transition from ACTIVE to LOADED. It is required that any startup initialization will be repeated upon invocation of start.

suspend
Transition from the appropriate ACTIVE state to IDLE.Pause operations in such a way that they may be cleanly resumed or the PlugIn can be unloaded.

resume
Transition from IDLE to ACTIVE

stop
Transition from IDLE state to LOADED.

Table 2: State Transitions

3.6 PlugIn Base Classes

A set of PlugIn convenience classes is available for PlugIn developers. These should be used where possible to bootstrap the process of upgrading old-style PlugIns to the new Plan API.

[image: image10.wmf]PlugInAdapter

ThinPlugIn

SimplifiedPlugIn

EssentialPlugIn

MB5.x PlugIn classes

(recommended)

MB3.0 PlugIn classes

still supported

SingleThreadedPlugIn

Figure 10: PlugIn Classes

3.6.1 PlugInAdapter

PlugInAdapter is provided as the bare-bones PlugIn base class. It contains only the minimal functionality necessary to implement the PlugIn state model and some initialization. It has no built-in transaction handling or thread execution, but it does provide convenience methods for opening and closing transactions as well as subscribing and publishing. Multi-threaded PlugIns should derive from this class. Such PlugIns may make use of the wake() method to explicitly invoke the PlugIn’s cycle immediately, or wake(long n) to invoke it n milliseconds later. This is useful when you want the PlugIn to be stimulated by some non-internal state change, such as a timer going off or database activity.

3.6.2 SingleThreadedPlugIn

SingleThreadedPlugIn is a simple base class which adds to PlugInAdapter a single thread of execution, calling the abstract method cycle() any time it is waked by a collection change. Note that this base class still does absolutely no transaction processing. An execution thread is provided, which does nothing but loop and call the cycle() method on any subscription activity. It also builds on PlugInAdapter’s wake() methods with wasAwakened(), which returns true if and only if the PlugIn was awakened explicitly (outside of normal subscription activity).

3.6.3 SimplifiedPlugIn

SimplifiedPlugIn is a base class for writing small PlugIns with a very simple initialization and runtime model. Subclasses need only implement setupSubscriptions() and execute(). Transaction handling for these methods is built-in. The former is used to set up any initial subscriptions, leaving subscription changes intact for the first call to execute(). Then it loops over standard in-transaction calls to execute() on any subscription activity. Subscription activity triggered outside the execute() method, such as GUI-injected tasks, must still be explicitly wrapped by transactions.

3.6.4 ThinPlugIn

ThinPlugIn provides a plugin base class which shares a single thread with all other ThinPlugIns on a per-cluster basis. EssentialPlugIn and SimplifiedPlugIn now extend ThinPlugIn rather than SingleThreadedPlugIn. The observation was that most of the plugins in any cluster actually have no concurrent behavior. Since most PlugIns possess no concurrent behavior, ThinPlugIn leverages this state to reduce the number of long-lived threads, resulting in lower system resource requirements (particularly on native thread-based VMs).

3.6.5 EssentialPlugIn

EssentialPlugIn is an older-style PlugIn from MB3.0. It is still supported in MB5.0, but it is recommended that developers extend SimplifiedPlugIn which makes better use of the recent Plan API changes. For example, in the start() method of PlugIns derived from EssentialPlugIn, you must call the start() method of the superclass, and you must explicitly open and close a transaction around the initial subscriptions there. In SimplifiedPlugIn this is handled for you when setupSubscriptions() is called.

3.6.6 Using Custom Helper Classes

In some cases, it may be desirable to offload certain processing or behavior to helper classes that do not themselves derive from a PlugIn base class. In the past, subscribing, publishing and other key Plan API methods were not available to these helper classes because the methods in the PlugIn base classes were protected. In the current release this is solved via a PlugInDelegate interface provided at the PlugInAdapter level. Helper classes can get the PlugIn’s delegate and use a public mirror method on the delegate to invoke any of the methods originally protected in PlugInAdapter.

3.7 Scriptable PlugIns

3.7.1 Introduction

Generic Scriptable plugins can be written using ECMAScript, XML or JESS. Both ECMAScript and JESS are implemented in Java which allows them to call Java and to be called from Java.

Several helper functions are available in Java and as libraries in ECMAScript to help building the PlugIns.

The various types of Generic PlugIns available for this year are:

· GenericScriptablePlugIn

· GenericTableAllocatorPlugIn / GenericRuleBasedExpanderPlugIn

· GenericCycleAllocatorPlugIn

· GenericAssessorPlugIn

· GenericRuleBasedAllocatorPlugIn / GenericRuleBasedExpanderPlugIn

Please note that the GenericAggregator and GenericDeAggregator are special cases of GenericScriptablePlugIn.

Sources of additional information:

· The specification of ECMA 262 can be found at http://www.ecma.ch. As JavaScript is an implementation of ECMA, additional documentation can be found at the Netscape’s web site http://developer.netscape.com/docs/manuals/index.html?content=javascript.html .

· FESI ECMAScript Interpreter, which is also an implementation of ECMA, is being used in ALP (http://home.worldcom.ch/~jmlugrin/fesi/index.html).

· Detailed documentation on the JESS interpreter and language syntax are available at the following URL: http://herzberg.ca.sandia.gov/jess/index.html
3.7.2 GenericScriptablePlugIn

3.7.2.1 Functionality

The Aggregator is a special case of GenericScriptablePlugIn. For an ordinary expander plugin each object matching its predicate is processed one-by-one, whereas in an Aggregator, a collection of objects matching its predicate are processed at a time.

3.7.2.2 Language

ECMAScript

3.7.2.3 Example of Use

SupplyExpander

3.7.2.4 Specification

This plugin expects certain functions to be implemented in ECMAScript.

· scriptSubscription()

Returns an array of predicates for subscribing to the objects interested in.

Called from the start() in the GenericScritablePlugIn.

· scriptExecute(arrayAllSubscriptions)

· scriptExecute(arrayAllSubscriptions)
Example script representing the case above:

function scriptSubscription() {

exp = newExpTasksPredicate(Verb.SUPPLY);

allPredicates = new Array(1);

allPredicates[0] = exp;

return allPredicates;

}

function scriptExecute(myObjects, mySubscriptions) {

myObject = myObjects[0];

if (javaTypeOf(myObject) == alp.ldm.plan.Task) {

myTask = myObject;

if (myTask.getVerb().equals(Verb.SUPPLY)) {

subTask = createNewTask();

copyTask(myTask, subTask);

pe = expanderScriptHelper.wireExpansion(subTask, getLdmFactory());

 mySubscriptions[0].getSubscriber().publishAdd(pe);

}

}

}
3.7.2.5 GenericTableAllocatorPlugIn / GenericTableExpanderPlugIn

3.7.2.6 Functionality

This PlugIn takes a table in the form of an XML file. This XML file is parsed to the Java PlugIn where the file is processed. The same plugin handles both allocation and expansion actions.

· The De-Aggregator is an inverse of Expansion. Hence a special case of TableDrivenExpander.

· The GenericCycleAllocator is a special case of GenericTableAllocator. In this case the allocation algorithm to be used is specified along with the preferences. The valid algorithms to choose from are Weighted, Random and Cyclic. Weighted algorithm assumes a weight to each each option available and priority is given to preferences with more weight.

3.7.2.7 Language

XML

3.7.2.8 Examples of Use

<!-- The action specifies how the source task is to be handled. In this case we are trying to expand a GETLOGSUPPORT task. The source task is embedded in <source> tags and the tasks into which the GETLOGSUPPORT tasks are to be expanded are embedded in <target> tags. -- >

<!—for now no validation. This is still a work in progress and this is expected to change completely in MB5.2 (
<commands>

<command action="Expand">

<source>

<task Verb="GETLOGSUPPORT">

</task>

</source>

<target>

<tasks>

<task Verb="DETERMINEREQUIREMENTS" >

<PrepositionalPhrases>

<PrepositionalPhrase OFTYPE="Consumable" FOR="1BN"></PrepositionalPhrase>

</PrepositionalPhrases>

</task>

<task Verb="DETERMINEREQUIREMENTS" >

<PrepositionalPhrases>

<PrepositionalPhrase OFTYPE="Repairable" FOR="1BN"></PrepositionalPhrase>

</PrepositionalPhrases>

</task>

</tasks>

<target>

</command>

<command action="Expand">

<source>

<task Verb="DETERMINEREQUIREMENTS">

<PrepositionalPhrases>

 <PrepositionalPhrase OFTYPE="Consumable" FOR="1BN"></PrepositionalPhrase>

</PrepositionalPhrases>

</task>

</source>

<target>

<task Verb="SUPPLY">

<PrepositionalPhrases>

<PrepositionalPhrase OFTYPE="Consumable" FOR="1BN"></PrepositionalPhrase>

</PrepositionalPhrases>

</task>

</target>

</command>

<command action="allocate">

<source>

<task Verb="SUPPLY">

<PrepositionalPhrases>

<PrepositionalPhrase OFTYPE="Consumable" FOR="1BN"></PrepositionalPhrase>

</PrepositionalPhrases>

</task>

</source>

<target Cluster="1FSB">

</target>

</command>

</commands>

Example script representing a GenericCycleBasedAllocator:

<!--In this example a SUPPORTREQUEST task is being allocated to its preferred provider. The algorithm chosen is WEIGHTED. Since DSMaintenanceProvider carries higher weightage than the SupportForceProvider, preference will be given to DSMaintenanceProvider rather than a SupportForceProvider. -->
<commands>

<command action="allocate">

<source>

<task Verb="SUPPORTREQUEST">

<PrepositionalPhrases>

<PrepositionalPhrase OFTYPE="DSMaintenance"></PrepositionalPhrase>

</PrepositionalPhrases>

</task>

</source>

<target algorithm="WEIGHTED">

<Preferences>

<Preference CapableRole="DSMaintenanceProvider" WEIGHT=10></Preference>

<Preference CapableRole="SupportForceProvider" WEIGHT=6></Preference>

</Preferences>

</target>

</command>

</commands>

3.7.3 GenericAssessorPlugIn

3.7.3.1 Functionality

The GenericAssessorPlugIn subscribes for a particular object, monitors it and depending on the situation takes an action.

The GenericAssessor has three parts.

· Expector ‑ Subscribes for certain objects.

· Monitor ‑ Monitors the objects subscribed for.

· Action ‑ While monitoring depending on the situation, it might trigger an action.

3.7.3.2 Language

ECMAScript.

3.7.3.3 Example of Use

SimpleThresholdMonitorPlugIn

3.7.3.4 Function Argument and Return Signatures

array expector();

monitor(array); //calls action once it finds that an action has to be taken. It sets a variable alert //to the string "true".

void action();

Example script representing above:
count = 0;

alert = "false";

function Expector() {

exp = newExpTasksPredicate(Verb.SUPPLY);

allPredicates = new Array(1);

allPredicates[0] = exp;

return allPredicates;

}

function Monitor(myObjects, mySubscription) {

myObject = myObjects[0];

if (javaTypeOf(myObject) == alp.ldm.plan.Task) {

count = count + 1;

}

if (count == 10) {

alert = "true";

wake();

}

}

function alert() {

writeln(" WARNING!! WARNING!! Exceeded the maximum capability ");

}

3.7.4 RuleBasedAllocatorPlugIn / RuleBasedExpanderPlugIn

3.7.4.1 Functionality

This generic plugin runs scripts written in JESS using a JESS interpreter. JESS is a Java implementation of the rule-based engine CLIPS, with particular Java extensions to allow it to be called from Java and to call Java from within JESS scripts.

3.7.4.2 JESS Fundamentals

The essential functionality of the JESS interpreter is as follows:

· A series of facts are asserted. A fact is an object or structure against which patterns can be made. A fact can be built on a template or standalone.

· A standalone fact:

(assert(a b c)) ; This is a simple fact establishing a structure with elements a, b, c; It would match a pattern (a, b, c) or (a, ?second, ?third), for example.

· A template based fact assertion:

(deftemplate OBJ "An OBJ Object."
; This will establish a template for an object

(slot START)

; with particular slots

(slot MIDDLE)

(slot FINISH))

(assert (OBJ (START X) (MIDDLE Y) (FINISH Z)))
; This asserts an object of; given type and contents

· A series of rules are established. A rule consists of a pattern and an action. The following is the syntax for a rule:

(defrule <rulename> [<doc-comment>] <pattern> => <action>)

For example:

(defrule PRINT-OBJ-START-X

"Print all objects of type OBJ whose START is X"

(OBJ (START ?start) (FINISH ?finish))

(test (eq ?start "X"))

=>

(printout t "Found one with FINISH = " ?finish)

)

· The interpreter is run using the method call '(run)'. This causes all patterns of all rules to be matched against all facts. For all pattern matches, the corresponding action of that rule is fired in the context of that object.

· It should be noted that JESS is a complete programming language, in the family of LISP or SCHEME or PROLOG. Sophisticated computation can be expressed and executed within an action clause of a JESS rule.

3.7.4.3 JESS Plugin Semantics

The semantics of the JESS Rule-Based Plugin is to take a script file containing rules (patterns and actions) and load it into a JESS interpreter from within Java. The PlugIn will create a subscription for all new tasks in the cluster. When the plugin is executed, the tasks are 'asserted' to the JESS interpreter and the rule engine is "run". In this manner, all rules in the interpreter (from the script) will be run against the facts (tasks) and appropriate actions will be fired.

The actions may run built-in JESS functions (e.g. printout) for debugging. However the expectation is that the actions will invoke ALP Java methods in order to generate an expansion or allocation

3.7.4.4 Language

JESS

3.7.4.5 Example Allocation Script

;; This example rule would run in a JESS rule-based allocator in Global Mode

;; To send modified fly-over policies to GlobalAir

(defrule PROPAGATE_FLYOVER_RULES

 "Propagate rules regarding fly-over to GlobalAir"

 ?policy <- (Policy (Name "FLYOVER_POLICY")) ;; Bind current policy to

variable

 =>

 (Allocate ?policy (OrganizationalAssetNamed "GlobalAir"))

3.7.5 List of Helper Functions available in ECMAScript

createVerb(String verbString);

newExpTasksPredicate(String verbString);

newAllocatableWFPredicate(String verbString);

newAllocationsPredicate(String verbString);

newOrgAssetsPredicate();

newAllAssetsPredicate(); //returns a predicate to subscribe for allassets

getLdmFactory();
//returns a reference to the plugin’s LdmFactory.

createNewTask();

setAggregationDelay(millis); //sets the time delay to batch up tasks for aggregation.

copyTask(fromTask, toTask); //helps to make a copy of the parent task

allExpandableTasks();

allAllocatableTasks();

allAllocatableWFs();

allAllocations();

allOrganizations();

allAssets();

allocateCurrentTask();

allocateToAsset(String);

allocateToOrg(String);

findOrganization(String);

parseTableFile(File);

Variables:
allocatorScriptHelper

expanderScriptHelper

predicateFactory //see the documentation for the alp.plugin.util.PredicateFactory
4. LogPlan Data Manipulation and Dyanamic Replanning

4.1 Overview

ALP provides PlugIn developers with two object-oriented interface for creating, retrieving, and updating data. PlugIns manipulate LogPlan objects, such as Tasks, PlanElements, and Workflows using the Plan API (for interactions with the LogPlan collection) and object-specific interfaces using the LDMFactory interface (for creating such objects).

From a conceptual view, this section describes the support for dynamic replanning and execution monitoring provided by the ALP infrastructure. Where applicable, this section will note additions to the infrastructure anticipated in builds beyond the current release. This section will also note significant changes in concept or terminology between previous implementations or design proposals and the MB5.1 infrastructure. In addition, this document will note design features that are particularly applicable to ALP in a demonstration as opposed to a real-time mode.

4.1.1 Conceptual Overview

The ALP architecture provides a revolutionary capability for dynamic replanning and execution monitoring as a distributed, agent-based system. This is a significant enhancement to the previous largely static planning model supported in previous builds and most planning tools.

By Static Planning, we mean a strict forward planning model of expansion, allocation, and aggregation wherein tasks are decomposed to their end and are not revisited again. The model of computation supported by ALP augments this model in several significant ways:

· Dynamic Planning : Incorporation of a control-feedback loop into the planning process, whereby information about the results of an allocation are sent back to the tasking cluster to allow it to iteratively improve the developing plan

· Dynamic Replanning : Continual rechecking of consistency and validity of assumptions underlying a plan, and recomputing plans as required

· Execution Monitoring : Addition of real-time data fusion to enable ALP to assess the planned expectations against reality as the plan is executed and replan the future accordingly.

In order to support these concepts of dynamic replanning and execution monitoring, the infrastructure supports a number of fundamental ALP operations. In particular, these fundamental operations, implemented by ALP PlugIns, include:

· Expansion: Decompose tasks as appropriate into workflows of subtasks, possibly with specified constraining relationships. Re-plan as necessary to ensure consistency and integrity of subtasks and workflow constraints.

· Allocation: Allocate tasks to physical assets or organizational assets. Re-plan as necessary to ensure acceptable allocation results

· Aggregation : Group like tasks together for common processing. Re-plan as necessary to ensure acceptable down-stream processing of aggregation.

· Assessment: Perform out-of-band analysis of LogPlan consistency with respect to consistency, interdependencies and changes to assumptions and take corrective actions where appropriate.

· LDM Object Management: Create and maintain LDM objects with respect to external data sources. Dynamically update LDM objects to reflect changes in these data sources.

4.1.2 Summary of Terminology

The following is an overview of concepts and terms used to describe the ALP infrastructure support for dynamic replanning and execution monitoring.

· Alert: An LDM object intended to capture a need for a human user’s intervention with a running ALP system. A PlugIn is expected to generate an alert when it needs information or approval from a user, or when it needs to inform a user of a condition within the society.

· Allocation: A structure representing the act of associating (allocating) a task to an asset, either a physical asset or an organizational asset. In the case of allocating to an organizational asset, the task along with its preferences is forwarded by the infrastructure to the associated cluster for further processing. The allocation structure contains a "reported" result and an "estimated" result. When the "estimated" result is filled in on the tasked cluster, the infrastructure automatically forwards this value as the "reported" value to the tasking cluster which can subscribe and react to this report.

· AllocationResult: A structure representing the real, estimated or predicted results of an allocation. The result contains details on all aspect dimensions specified in the associated preferences on the allocated task, as well as information about the success/failure of the allocation itself.

· Aspect: A measure of a given task along one of several dimensions. Aspects can be independent, that is, directly settable in a task, e.g. START_TIME, END_TIME, COST, QUANTITY, or dependant, that is, based on aggregate or derived behaviors, e.g. RISK, DANGER, CUSTOMER_SATISFACTION, INTEGRITY.

· Composition: A plan element representing the joining or aggregating of several tasks into a single task for processing as a single entity.

· Confidence: A value between 0-1 representing the expected closeness between a given allocation result and the result that would have been given had the allocation proceeded all the way to full decomposition to physical assets.

· Constraint: A structure on a workflow representing a relationship between subtasks on that workflow. In MB5.1, constraints may represent temporal-relationships between two tasks (e.g. the START_TIME of task B must be after the END_TIME of task A). In future builds, it is anticipated that constraints will be extended to represent non-temporal relationships among more-than-two tasks (e.g. the sum of all costs along a workflow, or the minimal quantity).

· Estimate: An estimate is an allocationResult that is generated by the ALP society without any actual allocation being made. This is a "no commitment" estimate that may be used for planning, but must be understood to be transient. A predictor (below) is an example of a mechanism for generating an estimate; we will see below that the task provides other mechanisms.

· Policy: An LDM object containing a series of parameters and rules guiding the behavior of a particular plugin or cluster. A policy can be a local object, or received from a superior and dynamically updated.

· Predictor: A structure on an organizational asset enabling a local computation of an allocation result on a task representing how an associated cluster would compute that allocation. It is expected that the predictor will generate allocation results containing confidences reflecting the expected fidelity of the prediction relative to actual allocation. A predictor is provided by a cluster when it passes a copy of itself as an organizational asset at hookup time, though this value can be updated dynamically through the course of the running society. (Note: this concept was previously referred to as an "Estimator.")

· Preference: A structure on a task specifying the desired handling of a task as expressed by the tasking organization. A task may contain multiple, one or no preferences. An individual preference describes a single aspect, a mapping of aspect space into score space, a weight allowing for the comparison of multiple preferences and ‘threshold’ information indicating values in score space beyond which the tasking organization would rather the allocation not take place.

· Rescind: The act of removing a task from the tasked organization, causing all derived tasks to automatically recursively be rescinded as well.

· ScenarioTime: The forward-moving sense of time within a given executing ALP scenario. The time is maintained globally throughout a society. In an ALP demonstration or "what-if" scenario, the scenario time is maintained by a distributed server and driven by UI; in a real-time ALP society, scenario time is driven from real clock time.

· Score: A unitless dimension in which all preferences map represent their desired aspect values.

· Trigger: An LDM object representing an action to be taken when a particular condition on a specified set of LDM objects is detected. For example, an alert may be generated when a particular threshold of some sort is detected, or replanning/rescinding a plan element as a result of some inconsistency being detected or some assumption being changed.

· Workflow: A plan element capturing the results of an expansion operation, containing a series of subtasks, and constraints among these subtasks.

4.1.3 Significant Infrastructure Changes for MB 5.1

ALP MB5.1 contains several significant changes to the previous interfaces and/or implementations of infrastructure concepts such as tasks, workflows, and allocations. The following is a summary of the major changes:

· The Task “PenaltyFunction” is replaced by a set of Preferences.

· The Task “desired Schedule” may now be expressed consistently for all Tasks as a Preference.

· A collection of Constraints is part of a Workflow and has the purpose of expressing relationships and facilitating the appropriate allocation of interdependent sub-asks.

· Workflows contain an AllocationResult aggregation function that is specified by the PlugIn which creates the Workflow. Similarly, aggregations contain an AllocationResult distribution function that is specified by the PlugIn which creates the Aggregation.

· The “time-phased” Schedule that was associated with AggregateAssets will no longer be supported. While this feature reduced the number of Tasks in the system, it presented considerable problems in implementing a scalable notification feedback mechanism. Instead, a repetitive Task or a sequence of ordinary Tasks should be used for this purpose.

· There is a new “repetitive Task” that will provide some of the functionality of the time-phased Schedule for repeated Tasks.

· It is no longer necessary to provide a nominal "estimate" to an allocation prior to allocating a task onwards.

· Allocator PlugIns can now work off of tasks directly, and need not work exclusively off of workflows.

· All fundamental plan elements (task, workflow, allocation, aggregation) will contain a globally unique ID.

4.1.4 Message Object Overview

Figure 11 illustrates the Message object hierarchy and their inheritance relationships. PlugIns should only be concerned with certain Directives (e.g., Tasks and Policies) and how they relate to the fundamental ALP operations. These objects are included for completeness and to facilitate understanding of the underlying ALP infrastructure which is discussed in this section. PlugIns should not be concerned with Messages or inter-cluster communications; these messages will be generated and handled by the Cluster infrastructure.

[image: image11.wmf]Directive

Message

Notification

Directive

Task-

Rescind

Asset-

Assignment

Task

MPTask

Asset-

Rescind

“Has a”

“Is a”

Policy

Figure 11: Message Interface Diagram

AssetAssignment

An AssetAssignment is a specialization of Directive used to assign an asset to a Cluster.

Directive

Directive is contained by a DirectiveMessage. The distinguishing feature (or extension) of a Directive (as compared to a Message) is that a Directive is related to a Plan. All Directives are related to one and only one Plan.

DirectiveMessage

DirectiveMessage extends ClusterMessage. A DirectiveMessage provides a way to package up a Directive and send it to another Cluster.

Notification

A Notification is a specialization of Directive that is used for synchronous event messages from one Cluster to another.

Policy

A specialization of Directive used to communicate policies or guidance, generally from outside the ALP Clusters, to Clusters.

Task

A Task is a specialization of Directive. Task is the essential "execute" directive, instructing a subordinate or service provider to plan and eventually accomplish a logistics activity. An MPTask is a task that has multiple parent Tasks.

TaskRescind and AssetRescind

Rescinds are a specialization of Directive used to terminate activity associated with a specific Directive. Internal processing by a Cluster in response to a Rescind may result in the creation of new Rescind orders, reflecting the termination of all Directives associated with the rescinded Directive.

4.1.5 LogPlan Object Overview

Figure 12 illustrates the the relationships among key LogPlan objects. A Plan consists of PlanElements that reference a task and describe how that task was processed. Each type of PlanElement represents a specific implementation of how that task was satisfied. PlanElements can be of type:

· Expansions that reference the Workflows and implied Tasks necessary to complete the Task

· Aggregations that reference a Composition with a single Task that describes how multiple PlanElements are satisfied.

· Allocations that describe the Assets allocated to the Task

· AssetTransfers that trigger the sending of an AssetAssignment Directive (assigning an asset to another organization)

[image: image12.wmf]Workflow

n

1

1

Task

Plan

Asset

extends, e.g. Allocation is a

PlanElement

has a reference to,

e.g. Plan has references to n

 PlanElements

Legend:

Expansion

PlanElement

Allocation

Aggregation

AssetTransfer

Composition

1

1

1

2

Allocation

Result

Figure 12: Plan Relationships

Aggregation (type of PlanElement)

An Aggregation contains a Combination that defines how multiple input tasks are to be satisfied. An Aggregation is a subclass of PlanElement so that it can be recorded in the LogPlan to facilitate tracing a Task to its expanded Tasks.

Allocation (type of PlanElement)

An Allocation specifies how a Task is accomplished. It contains the Asset (either a ClusterAsset or Physical Asset) that has been allocated to perform the Task. An Allocation is a subclass of PlanElement so that it can be recorded in the LogPlan to facilitate tracing a Task to its expanded Tasks.

AllocationResult

An Allocation contains an AllocationResult that specifies exactly how a specific task will be accomplished. It specifies measures computed with respect to the requirements defined in a task (specifically, the task preferences).

Asset

Assets are described in the Logical Data Model section.

AssetTransfer (type of PlanElement)
An AssetTransfer triggers the sending of an AssetAssignment (a specialization of Directive) to assign Assets to other Clusters. An AssetTransfer is a subclass of PlanElement so that it can be recorded in the LogPlan to facilitate tracing a Task to its expanded Tasks.

Composition
A Composition contains a single Task that satisfies multiple PlanElements.

Expansion (type of PlanElement)

An Expansion contains a Workflow that defines how the input is to be accomplished. An Expansion is a subclass of PlanElement so that it can be recorded in the LogPlan to facilitate tracing a Task to its expanded Tasks.

FailedAllocation

A FailedAllocation plan element indicates that the allocation of a task has not met the

requirements of the task. This FailedAllocation indicates the "best" job that a provider

can perform given the current requirements and operating conditions. A FailedAllocation

triggers the generation of AllocationResult with the attribute isSuccess = false

Plan

A Plan (also called a logistics plan or a LogPlan) contains one or more PlanElements

PlanElement

A PlanElement references a Task and specifies how that Task is to be accomplished. A PlanElement is either an Allocation, an Expansion, an Aggregation, or an AssetTransfer.

Task

Task is the essential "execute" directive, instructing a subordinate or service provider to plan and eventually accomplish a logistics activity.

Workflow

A Workflow is a set of Tasks (also called subtasks) that must be completed in order to accomplish a higher-level Task (also called a parent task) and the temporal or causal relationships (constraints) between the subtasks.

4.2 Structures and Interfaces

This section provides details on some of the crucial objects and interfaces involved in dynamic replanning and execution monitoring.

4.2.1 Unique Object Identifiers

There are globally unique objects within an ALP society. The ALP Infrastructure will automatically assign these objects a globally unique object identifier as they are created. These objects include:

· Task

· Policy

· Workflow

· Composition

· PlanElement

· Asset

These objects can be referenced by their object identifier or OID. These identifiers can be obtained through the UniqueObject interface:

package alp.society;

interface UniqueObject {

 UID getUID();

}

4.2.2 PlanElements

PlanElements are the primitive building blocks from which a LogPlan is constructed. A single PlanElement represents a cycle of work completed against a Task. A PlanElement is of type Expansion (containing a Workflow and the implied tasks embodied in it), Allocation (containing an Asset) Aggregation (containing a Composition), or AssetTransfer. For any given LogPlan there can be only one PlanElement instance per Task (Plan constituent). However, because Tasks can be duplicated across “what-if” LogPlans, multiple allocations across different plan objects are possible. Figure 13 illustrates PlanElement object relationships.

[image: image13.wmf]Workflow

Task T1

Task T1.1

Task T1.2

Task T1.3

Task T1.4

Plan

Element

Expansion

1

1

1

References of a Plan

Element

In the case of

PlanElement

 is

an Expansion

Asset

AllocationResult

1

1

Task T1

Plan

Element

Allocation

In the case of

PlanElement

 is

an Allocation

1

extends, e.g. Allocation is a

PlanElement

has a reference to,

e.g. Allocation has a reference to a Task

Legend:

Figure 13: PlanElement

4.2.2.1 PlanElement Interface

Interface alp.ldm.plan.PlanElement

public interface PlanElement extends ALPObject

PlanElement Interface: PlanElements are the primitive building blocks from which LogPlans are constructed. A single PlanElement represents a cycle of work completed against a Task. A PlanElement is of type Expansion (represented by a Workflow and the implied tasks embodied in it), Allocation (represented by an Asset), Aggregation (represented by a Composition) or AssetTransfer.

Method Index

getEstimatedResult()

 Returns the estimated allocation result that is related to performing the Task.

getPlan()

getReportedResult()

 Returns the reported allocation result.

getTask()

 This returns the Task of the PlanElement.

setEstimatedResult(AllocationResult)

 Set the estimated allocation result so that a notification will propagate up another level.

Methods

getPlan

 public abstract Plan getPlan()

Returns:

 Plan the Plan of this plan element.

getTask

 public abstract Task getTask()

This returns the Task of the PlanElement.

Returns:

 Task

getEstimatedResult

 public abstract AllocationResult getEstimatedResult()

Returns the estimated allocation result that is related to performing the Task.

Returns:

 AllocationResult

getReportedResult

 public abstract AllocationResult getReportedResult()

Returns the reported allocation result.

Returns:

 AllocationResult

setEstimatedResult

 public abstract void setEstimatedResult(AllocationResult estimatedresult)

Set the estimated allocation result so that a notification will propagate up another level.

4.2.2.2 Expansion Interface

Interface alp.ldm.plan.Expansion

public interface Expansion extends PlanElement

Expansion Interface An Expansion is a kind of PlanElement that represents a Workflow that is the result of an expansion of a Task.

Method Index

getWorkflow()

 Returns the Workflow created by the expansion of the Task

Methods

getWorkflow

 public abstract Workflow getWorkflow()

Returns the Workflow created by the expansion of the Task

Returns:

 Workflow

4.2.2.3 Aggregation Interface

Interface alp.ldm.plan.Aggregation

public interface Aggregation extends PlanElement

Aggregation Interface An Aggregation is a kind of PlanElement that merges multiple tasks into a single task.

Method Index

getComposition()

 Returns the Composition created by the aggregations of the task.

Methods

getComposition

 public abstract Composition getComposition()

Returns the Composition created by the aggregations of the task.

Returns:

 Composition

See Also:

Composition

4.2.2.4 Allocation Interface

Interface alp.ldm.plan.Allocation

public interface Allocation extends PlanElement

Allocation Interface An Allocation is a type of PlanElement which represents the Asset that will complete the Task.

Method Index

getAsset()

Returns an Asset that has certain capabilities.

Methods

getAsset

 public abstract Asset getAsset()

Returns an Asset that has certain capabilities. This Asset is assigned to complete the Task that is matched with the Allocation in the PlanElement.

Returns:

 Asset - a physical entity or cluster that is assigned to perform the Task.

4.2.2.5 AssetTransfer Interface

Interface alp.ldm.plan.AssetTransfer

public interface AssetTransfer extends PlanElement

AssetTransfer Interface An AssetTransfer is a type of PlanElement which represents an Asset being assigned to another Cluster for use. An AssetAssignment Directive is closely related

Method Index

getAsset()

 Returns an Asset that has certain capabilities.

getAssignee()

 Returns the Cluster that the asset is being assigned to.

getAssignor()

 Returns the Cluster that the asset is assigned from.

getSchedule()

 Returns the LocationRangeScheduleElement for the "ownership" of the asset being transfered.

Methods

getAsset

 public abstract Asset getAsset()

Returns an Asset that has certain capabilities. This Asset is being assigned to a cluster for use.

Returns:

 alp.ldm.asset.Asset - a physical entity or cluster that is assigned to a Cluster.

getAssignee

 public abstract ClusterIdentifier getAssignee()

Returns the Cluster that the asset is being assigned to.

Returns:

 ClusterIdentifier representing the destination of the asset

getAssignor

 public abstract ClusterIdentifier getAssignor()

Returns the Cluster that the asset is assigned from.

Returns:

 ClusterIdentifier representing the source of the asset

getSchedule

 public abstract ScheduleElement getSchedule()

Returns the LocationRangeScheduleElement for the "ownership" of the asset being transfered.

Returns:

 ScheduleElement

4.2.3 Tasks

A Task is an instruction to plan and eventually perform an activity. Each Task has a globally unique identifier. Tasks can be inserted into the system either by personnel or systems external to ALP or by ALP PlugIns. These Tasks describe the functions that an asset (physical or organizational) must perform.

Tasks contain preferences that specify how the task should be allocated. These preferences are generated at the time the task is created and may be modified dynamically by the tasking organization without the need to rescind an already allocated task.

A significant new interface, provideEstimates(), allows for the computation of multiple estimates for allocating a given task given a series of preferences. Given that list of preferences, a different allocationResult estimate is provided giving a result representing what ALP would have done had it allocated this task. It is important to note that the results returned are only estimates and that no actual allocation or commitment of resources has been made. The interface provides a specification of confidence to allow for bounding the level of detail and quality of the estimates returned.

The contents of a Task can be described by an ALP Task grammar. Each part of the Task represents a particular grammatical piece of a sentence describing a logistical action. Parts of a Task include a Verb, a DirectObject, PrepositionalPhrases, and the associated PlanElement (if any) which represents how the Task is handled (aggregated, expanded or allocated). Figure 14 illustrates the Task object relations.

Note: Tasks no longer contain PenaltyFunctions or desired Schedules; these are represented by Preferences.

[image: image14.wmf]n

1

1

1

n

1

Task Relations

Task

(Parent Task)

1

has a reference to,

e.g. Task has a reference to

 Preferences

Legend:

Asset

(

DirectObject

)

Prepositional-

Phrase

Verb

Preferences

Plan

Workflow

Task

1

Figure 14: Task Composition

interface Task extends UniqueObject {

 getWorkflow();

 // new methods
 getPreferences();

// Preferences guiding allocation behavior

 getPriority(); // Priority of this task within given customer

 // remaining original methods

 getDirectObject();

 getPrepositionalPhrases();

 getVerb();

 getPlanElement();

 // Interface to provide multiple Estimates for multiple preferences

 // for the given task

 // Estimates are computed to given level of confidence

 Enumeration provideEstimates(Enumeration preferences,

 double confidence);

 // utility method : Are there any preferences violated by this result?
 boolean testPreferences(AllocationResult);
}

The Task interface allows PlugIns to “get” the object representations of each of these components. The interface does not allow set methods on any of these objects as Tasks are, by definition, immutable. Any software that creates a Task must use the LDMServesPlugIn interface.

4.2.3.1 Repetitive Tasks

A Repetitive Task is a Task that specifies a regular interval of time within a defined time span. These Tasks should be used with regular time-phased Tasks that have the same set of preferences. Tasks representing either varying quantities or across irregular intervals must be represented by multiple Tasks.

Repetitive Tasks are specified by the use of specific Preferences. The Preferences specific to a repetitive Task are: INTERVAL, TOTAL_QUANTITY, and TOTAL_SHIPMENTS. As an example, consider a "repetitive task" as representing 10 things every Wednesday for a month. In constructing this Task, the following set of Preferences would typically be used:

START_TIME preference: May 26th
Specifies the beginning of the period

END_TIME preference: June 26th
Specifies the end of the period

INTERVAL preference: 1 WEEK (in milliseconds)
Specifies the delivery frequency

QUANTITY preference: 10
Specifies the quantity in each delivery

TOTAL_QUANTITY preference: 40
Specifies the total quantity received at the end of the time period

TOTAL_SHIPMENTS preference: 4
Specifies the number of deliveries over the task time period

As the provider will try to satisfy this request as closely as possible, it may only be able to achieve completion of the task, for example, by scheduling a late delivery for one of the intervals or by scheduling two deliveries in one week. By specifying both INTERVAL and QUANTITY preferences and TOTAL_QUANTITY and TOTAL_SHIPMENTS preferences, the provider can tradeoff individual delivery requirements with overall task objectives. By weighting these preferences, the task originator can specify which preferences are most important.

The allocation of Repetitive Tasks will result in multi-phased allocation result for the overall Task, with detail for each repetition.

4.2.3.2 Task Grammar

The contents of a Task can be described by an ALP Task grammar. Each part of the Task represents a particular grammatical piece of a sentence describing a logistical action. Table 3-1 describes the ALP Task grammar. An example Task could be “FSB supply Solenoid for CBTBN by 1-Sept-98.”

Table 3-1 Task Grammar

Grammar
Object Type
Example

Subject (assigned in an Allocation)
Asset
FSB (Organization)

Verb
Verb
Supply

Direct Object
Asset
Solenoid

Preferences*
TimeAspect
1-Sept-98

Prepositional Phrase (can contain multiple phrases)

Preposition

Indirect Object (depends on Preposition)
Preposition Preposition

Asset Location
For To

CBTBN UZKL

*Preferences can express cost and risk requirements as well as time requirements.

4.2.3.3 Multi-parent Tasks

A MPTask (Multi-Parent Task) is a subclass of Task that supports the aggregation of two or more incoming tasks into a workflow with a single derived task (MPTask). A MPTask contains a vector referencing these multiple parent tasks.

4.2.4 Preferences

A Preference contains information for the specifying of how a tasking organization would like the associated task to be allocated. This information includes:

· Aspect type

· Scoring function : A mapping from aspect space to score space representing relative desirability of different allocations for the task in that aspect space

· Thresholds : Upper and lower bounds in score space indicating that allocations associated with scores beyond these bounds are considered unacceptable to the tasking organization

· Weight : A floating point value allowing for inter-preference comparisons for a given task

Additionally, the preference provides the following interface methods:

· Minima : List of points at which the scoring function reaches local minima

· Bounds : List of points at which the scoring function reaches specified thresholds

· ScoreAtAspectValue : Mapping points in aspect space to score space

public interface AspectScorePoint extends ALPObject {

 // The ‘score’ value

 double getScore();

 // The value and aspect type

 AspectValue getAspectValue();

 }

public interface Preference extends AspectType, ALPObject {

 // The AspectType that this preference represents

 int getAspectType();

 // The low threshold value

 double getLowThreshold();

 // The high threshold value

 double getHighThreshold();

 // The collection of AspectScorePoints which make up the scoring function

 Enumeration getAspectScorePoints();

 // The collection of AspectScorePoints which are the local minima of

 // the scoring function

 Enumeration getMinima();

 // The collection of AspectScorePoints at which the curve crosses the

 // low threshold

 Enumeration getLowerBounds();

 // The collection of AspectScorePoints at which the curve crosses the

 // high threshold

 Enumeration getUpperBounds();

 // Score at given aspect value

 double getScore(AspectValue value);

 }

4.2.4.1 Preference Implementation

A Preference is a generic interface as noted above. ALP provides a specific Preference Implementation providing default standard scoring functions and conventions with respect to thresholds and preferences.

public class PreferenceImpl implements Preference, NewPreference, AspectType

 extends ALPObjectImpl {

 public static final double DEFAULT_LOW_THRESHOLD = 0.0;

 public static final double DEFAULT_HIGH_THRESHOLD = 1.0;

 private double lowthreshold, highthreshold;

 private int aspect;

 private Vector aspoints;

 // Constructor that takes a collection of AspectScorePoints and

 // uses the default thresholds.

 public PreferenceImpl(Enumeration points);

 // Constructor for all.

 public PreferenceImpl(Enumeration points, double lt, double ht, int at);

 //Preference interface implementations

 // The AspectType that this preference represents

 public int getAspectType();

 // The low threshold.

 public double getLowThreshold();

 // The high threshold.

 public double getHighThreshold();

 // The collection of AspectScorePoints which make up the scoring function.

 public Enumeration getAspectScorePoints();

 // The collection of AspectScorePoints which are the local minima of

 // the scoring function.

 public Enumeration getMinima();

 // The collection of AspectScorePoints at which the curve crosses the

 // low threshold.

 public Enumeration getLowerBounds();

 // The collection of AspectScorePoints at which the curve crosses the

 // high threshold.

 public Enumeration getUpperBounds();

 // The score given an AspectValue.

 public double getScore(AspectValue value);

 // NewPreference interface implementations

 /// The AspectType that this preference represents

 public void setAspectType(int aspectType);

 //low The low threshold.

 public void setLowThreshold(double low);

 }

 // high The high threshold.

 public void setHighThreshold(double high);

 // The collection of AspectScorePoints which make up the scoring funtion.

 public void setAspectScorePoints(Enumeration aspectScorePoints);

 // Add to the already existing collection of AspectScorePoints

 public void addAspectScorePoint(AspectScorePoint anASP) ;

 // helper function implementations

 // Assume the aspect type of this preference is whatever the

 // type of the first aspectscorepoint is.

 public int findAspectType();

 // Standard curve type helper functions

 // A single point with straight sides in score space

 public Enumeration StrictlyAtValue(AspectValue value);

 // A single point with slanted sides in score space

public Enumeration PreferredAtValue(AspectValue value);

 // A flat basic with straight sides

 public Enumeration StrictlyBetweenValues(AspectValue low, AspectValue high);

 // A flat basin with slanted sides

 public Enumeration PreferredBetweenValues(AspectValue low,AspectValue high);

 // Prefer as close as possible to value from above

 public Enumeration NearOrAbove(AspectValue value);

 // Prefer as close as possible to value from below

 public Enumeration NearOrBelow(AspectValue value);

 }

4.2.4.2 Scoring Function Example

A Scoring Function, depicted in Figure 15 is a measure of the “cost” of performing a Task with respect to a specific Aspect:

· The simple scoring function is piecewise linear connecting the AspectScorePoint objects.

· The slope of the function as the independentVariable approaches negative infinity is a continuation of the slope between the first two points.

· The slope of the function as the independentVariable approaches positive infinity is a continuation of the slope between the last two points.

[image: image15.wmf]aspectScorePoints

highThreshold

IndependentVariableID

e.g.

START_TIME

Score

Figure 15: Scoring Function
4.2.5 Management of Typed Quantities

AspectValues are used both in preferences and in AllocationResponses, and so can express both the request for the handling of a particular task and the results of that handling. In requesting and handling mixed types of assets, it is necessary to manage the quantities of these different asset types separately.

The ALP infrastructure provides a kind of AspectValue called TypedQuantityAspectValue, which provides the ability to request and report on quantities of a particular asset. A user may request or report on different quantities of multiple assets by using multiple instances of this AspectValue in the appropriate preference set or allocationResult.

For example, if one wanted to request 7 objects of type X, one could use a Quantity aspect value and specify the type X of the desired object in the task. However, if one wanted a task to request 7 objects of type X and 11 objects of type Y, one could generate two different preferences containing respective scoring functions representing preferences for each TypedQuantityAspectValue. The resulting allocationResult would contain TypedQuantityAspectValues representing the respective quantities for asset types X and Y.

The TypedQuantityAspectValue provides the following interface:

public class TypedQuantityAspectValue extends AspectValue {

 /** Simple Constructor that takes the asset and the quantity.

 * @param anAsset The Asset - probably a prototype

 * @param aQuantity The amount of assets.

 * @return TypedQuantityAspectValue

 */

 public TypedQuantityAspectValue(Asset anAsset, double aQuantity);

 /** @return Asset The Asset represented by this aspect */

 public Asset getAsset() {

 return theasset;

 }

4.2.6 Aspects

Aspects represent measurements along a particular dimension of a particular task. The interface AspectType contains all recognized standard ALP aspect types.

For purposes of debugging and development of new PlugIns, the ALP infrastructure supports the creation and propagation of new aspect types. It is expected that all such aspect types be rolled back into the standard AspectType interface by the end of development.

interface AspectType {

// Constant names for different ‘cost’ dimensions in which to report

// allocation consequences

// Start time of given Task

public final static int START_TIME = 0;

// End time of given Task

public final static int END_TIME = 1;

// Cost (in $) of allocating given Task

public final static int COST = 2;

// Probability of loss of assets associated with allocation

public final static int DANGER = 3;

// Probability of failure to keep estimates in this AllocationResult

public final static int RISK = 4;

// Quantities associated with allocation (number of elements sourced, e.g.)

public final static int QUANTITY = 5;

public final static int CDAY = 6; // no Task, relative to OPLAN

public final static int TIME = 7; // no Task, absolute time

public final static int CUSTOMER_SATISFACTION = 8;

}

// Definitions of Aspect objects representing measurements, predictions

// or expectations of task allocations in various dimensions

interface Aspect {

 int getAspectType();

}

interface CDayAspect extends Aspect {

 int getCDay();

 OPlan getOPlan();

}

interface TimeAspect extends Aspect {

 long getTime(); // Time is now in milliseconds, rather than a Java Date.

 // We are considering expressing all dates as

 // offsets from a specific reference point.

}

interface CostAspect extends Aspect {

 double getCost();

}

interface RiskAspect extends Aspect {

 double getRisk();

}

interface DangerAspect extends Aspect {

 double getDanger();

}

interface QuantityAspect extends Aspect {

double getQuantity();

// Optionally, can specify asset type to distinguish different quantities

// in AggregateAsset processing.

String getAssetType();

}

interface CustomerSatisfactionAspect extends Aspect {

 double getValue();

}

4.2.7 Workflow Concepts

An Expansion describes the relation between a specified Task and the Workflow that must be performed to satisfy the Task. The Workflow includes the implied Tasks to be performed and the relationships that must be satisfied to accomplish the specified Task. Each Workflow is a globally unique object.

Constraints on a workflow are conditions that must be satisfied; further, the set of Constraints must define a directed acyclic graph (DAG).

interface Workflow extends UniqueObject {

 AllocationResultAggregator getAllocationResultAggregator(); // a class (function)

 Enumeration getTasks();

 //utility methods

 Enumeration getConstraints();

 //compute the aggregated allocation result for the workflow

 AllocationResult computeAllocationResult();

}

Figure 16 illustrates the basic workflow relationships.

[image: image16.wmf]Workflow

Task

Constraint

m

n

2

k

Legend:

has a reference to,

e.g. Workflow has references to n Tasks

Preferences

1

Figure 16: Workflow Relations

4.2.7.1 Constraint

A Constraint is part of a Workflow and provides pair-wise temporal relationships among subtasks of a workflow. It is anticipated that the Constraint object will be expanded in future builds to represent more complex and complete types of inter-task relationships. A given task may have more than one applicable Constraint.

public interface Constraint extends ALPObject {

public static final int INITIATED = 0;

public static final int COMPLETED = 1;

public static final int COINCIDENT = 0;

public static final int BEFORE = -1;

public static final int AFTER = 1;

// Returns the Task which is constraining another event or Task.

Task getConstrainingTask();

// Returns an "event" that refers to either the

// initiation of the constraining Task or the

// completion of the constraining Task.

int getConstrainingEvent();

// Returns a Task which is constrained by another event or Task.

Task getConstrainedTask();

// Returns an "event" that refers to either the

// initiation of the constrained Task or the

// completion of the constrained Task.

 // Returns an int which is either "0" (INITIATED) or "1" (COMPLETED).

 int getConstrainedEvent();

// Returns an int which represents the order of the Constraint.

// Value will be equal to "0" (COINCIDENT), "-1" (BEFORE)

 // or "1" (AFTER).

int getConstraintOrder();

// Returns a long which represents the time offset of the Constraint.

// If the long is +x it represents a future offset, if it is -x,

 // it represents a past offset.

long getOffsetofConstraint();

}

4.2.7.2 AllocationResultAggregator

Once all the Tasks in a Workflow have been allocated, the Workflow can compute an aggregate AllocationResult for the Workflow as a whole using an AllocationResultAggregator. AllocationResultAggregators are classes that specify how to aggregate each parameter of an AllocationResult. A PlugIn may either define an Aggregator or select default, pre-defined Aggregator to be used for each Workflow the PlugIn creates.

interface AllocationResultAggregator{

 AllocationResult calculate(Workflow wf,

 AllocationResult currentAR,

 TaskAllocationTable tat);

}

4.2.7.3 Workflow Completion

The Allocator analyzes the requirements expressed among the current set of Workflows and allocates available resources against the collective tasks (workflow elements) that make up the Workflows, paying special attention to the constraints and penalty functions of the tasks. The Allocator generates one or more PlanElements (Allocations) that represent the satisfaction of a particular task requirement.

[image: image17.wmf]Workflow

constraint

constrained

constrained

event

constraining

constraining

offsetOf

ID

Task

Event

Order

Task

Event

Constraint

C1

Task 2

initiated

after

Task 1

initiated

0

C2

Task 3

initiated

after

Task 1

initiated

0

C3

Task 3

completed

after

Task 2

initiated

0

C4

Task 4

initiated

before

Task 2

completed

0

C5

Task 4

initiated

after

Task 3

completed

0

C6

Task 5

initiated

after

Task 3

completed

10,000

C7

Task 6

completed

after

Task 4

completed

0

C8

Task 6

initiated

after

Task 5

initiated

3,600,000

C9

Task 7

initiated

before

Task 5

completed

0

C10

Task 8

initiated

after

Task 4

completed

0

C11

Task 8

initiated

after

Task 5

completed

0

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

Figure 17: Task Constraint Relationships in a Workflow

Figure 17 illustrates one possible generic representation of a workflow. The workflow supports relationships between tasks through constraints.

4.2.8 Composition

A Composition represents the joining or aggregating of several distinct tasks (associated with distinct PlanElements) into a single task for common processing. A Composition is associated with a Aggregation PlanElement.

Note: a Composition replaces the previous notion of MPWorkflows.

 public interface Composition extends ALPObject {

 // Returns the Tasks that are being aggregated

 Enumeration getParentTasks();

 // Returns the newly created task that represents all 'parent' tasks.

 Task getCombinedTask();

 // Allows the AllocationResult to be properly dispersed among the

 // original (or parent) tasks.

 AllocationResultDistributor getDistributor();

 // Return the allocationresults to the parent (original) tasks.

 // using the algorithm defined by the AllocationResultDistributor.

 void DistributeResults();

}

4.2.8.1 AllocationResultDistributor

When an AllocationResult is associated with the allocation of a Composition, the results need to be distributed among the tasks of the associated Composition. This computation is performed by an AllocationResultDistributor object. A PlugIn may either define an Distributor or select a default, pre-defined Distributor to be used for each Composition the PlugIn creates.

interface AllocationResultDistributor {

 AllocationResult calculate(Composition comp,

 AllocationResult currentAR,

 TaskAllocationTable tat);

}

4.2.9 Allocation Concepts

An Allocation object represents information about the allocation of a Task to an asset. It specifies the allocated task and assigned asset (Physical or Organizational). Additionally, it contains slots for the estimated (to be reported to tasking cluster) and reported (as reported from up-stream tasked cluster) AllocationResult values. Further, it contains a confidence threshold beyond which ALP is instructed not to continue to process the allocation to termination.

class Allocation {

// The Task allocated to the asset

Task allocated_task;

// The asset (physical or organizational) to which the Task is allocated

Asset assigned_asset;

// The AllocationResult representing our current best estimate of the

// ‘costs’ or consequences of this allocation. This allocation is

// reported to superior clusters.

AllocationResult estimatedAllocationResult;

// The AllocationResult representing the results returned by a

// subordinate cluster from its estimate.

AllocationResult reportedAllocationResult;

 // The confidence value this allocation is trying to attain. When

 // this value is reached, further processing and decomposition of this

 // task may terminate.

double requiredConfidence;

}

4.2.9.1 AllocationResult

An AllocationResult represents the "costs" or consequences of allocating a Task to a given Asset as estimated by the allocating cluster. The AllocationResult defines several constants defining spaces over which the results apply, and several methods providing optional greater detail. The AllocationResult indicates whether the allocation was a success or a failure, that is, did an actual allocation take place on the tasked cluster that did not violate provided thresholds. The AllocationResult contains, in addition, a confidence value (in range 0-1) representing the expected correlation between this result and a result that would have been produced had the allocation proceeded to full decomposition to PhysicalAssets.

When more than one aspect is specified on an allocated task, the possibility exists that the result returned will be "phased" across one or more of these aspects. That is, the satisfaction of the task may be handled in multiple chunks across the different aspect dimensions. The allocation result provides interfaces to determine if a response is phased, to receive summary or detailed information on the result.

For example, if an allocation specifies preferences in the aspect dimensions of START_TIME and QUANTITY, the resulting allocation may be time-phased in terms of quantity: we may get 7 objects on day C+10, 5 objects on day C+15 and 8 objects on day C+20. In such a case, summary information would tell us that we are getting 20 objects by C+20, but we can get time-phased information to tell us how much is to be received when.

public interface AllocationResult extends AspectType, ALPObject {

 // Give the result with respect to a given AspectType.

 // If the AllocationResult is phased, this method will return

 // the summary value of the given AspectType.

 // For example,

 // getValue(AspectType.START_TIME) returns the Task start time.

 // Note : results are not required to contain data in each dimension.

 double getValue(int aspectType);

 // Represents whether or not the allocation was a success. If any

 // Constraints were violated by the allocation, then the isSuccess()

 // method returns false and the PlugIn that created the subtask should

 // recognize this event. The Expander may re-expand, change the

 // Constraints or Preferences, or indicate failure to its superior.

 boolean isSuccess();

 // Represents whether or not the allocation result is phased in some

 // aspect dimension.

 boolean isPhased();

 // A Collection of AspectTypes representative of the type and

 / order of the aspects in each the result.

 Enumeration getAspectTypes();

 // A collection of Vectors that represents each phased result. If the result

 // is not phased, the enumeration will contain one vector of answers.

 Enumeration getResults();

 // The confidence rating of this result.

 double getConfidenceRating();

}

4.2.9.2 Predictor

A Predictor is an object that resides on an OrganizationalAsset and provides a local estimate of how a given associated cluster would allocate a given task. Predictors can be dynamically updated from a cluster when it sends an updated copy if its OrganizationalAsset.

Note: the Predictor was presented previously as an Estimator.

Public interface Predictor extends ALPObject {

 // A predictive result for the given task.

 AllocationResult Predict(Task for_task);

 // The confidence rating of this predictor.

 double getConfidenceRating();

 }

4.2.10 Alert

An Alert object specifies a solicitation on the part of ALP of interaction with a human operator. An alert may provide information to an operator, or may request input from an operator, either as input information, acknowledgements or decisions. Alerts are created by PlugIns and may be brought up passively or ‘intrusively’ on an associated UI for handling by an operator. When a user handles an alert, the alert is labeled as handled in the LDM so that the creating PlugIn can subscribe to the changed object and receive the input from the user asynchronously.

public class Alert extends ALPObject

{

 // Constructor with descriptive text,

 // boolean indicating whether response from operator is required

 // A list of objects to display/edit/select to address alert.

 // And a severity to dictate whether alert should be displayed passively

 // or actively.

 public Alert(String text,

 Boolean operatorResponseRequired,

 Object []relevantObjects,

 int severity);

 public boolean operatorResponseRequired();

 public Object []relevantObjects();

 public int severity;

 // Indicate whether handled by operator

 public boolean hasBeenHandled();

 // Set/get Operator Response

 public String getOperatorResponse();

 public String setOperatorResponse();

}

4.2.11 Policy

Policy objects contain lists of RuleParameters that PlugIns use to do their jobs. The parameters may be of type INTEGER, DOUBLE, STRING, ENUMERATION, CLASS and have specified bounds that guide what values can be set in these parameters when edited. PlugIns specify what policies they require at initialization to ensure that information is available before execution begins. Business rules are cluster-specific Policy objects; most policy objects are expected to be provided by a superior at the establishment of the superior-subordinate relationship. It is expected that Policies not be edited by PlugIns, but rather that they be edited externally (from a UI, e.g.) and propagated to clusters as appropriate.

public class Policy {

 // Add a new parameter to the Policy rule set

 public void Add(RuleParameter new-param);

 // Lookup a rule parameter by name – may be null

 public RuleParameter Lookup(String pname);

 // Get name of policy object

 public String getName();

 // Save/restore internal state

 public void save();

 public void load();

}

New Policy classes should be derived from the base Policy class. The derived classes should have methods to access the value stored in each of the RuleParameters. This allows for compile-time checking for PlugIns using values retrieved from Policies. For example, a new ShipWeightPolicy class could be derived that has a method int getMaxFlightWeight(); Having the parameters of the policy available in this way allows the PlugIn developer to know the parameters available to him at development time. Without the derived class, the developer has know way of knowing what RuleParameters might end up in the Policy.

The derived Policy classes must be fully dependent on the base class for holding on to the RuleParameters., and should not have any RuleParameter data members. Furthermore, all data members of derived Policy classes must be transient. This is to ensure that serialization and initialization can be handled correctly by the base class.

4.2.12 Triggers

A trigger is a structure that is activated an when a particular feature or combination of features exist in the LogPlan. Triggers are established by PlugIns to declare and maintain their consistency and to aid with replanning. Triggers can be established though the UI by ALP users to augment a cluster’s behavior. A standard TriggerManagerPlugin will manage and maintain the triggers for PlugIns in a particular cluster. For example, a trigger may establish a relationship between an allocation and an auxiliary object (e.g. when this route-network is recomputed, mark allocations based on scheduling with that network as “stale” for future replanning). As another example, a trigger may generate an alert when load parameter is above some given threshold. Trigger interface implementations and base classes are located in the alp.ldm.plan.trigger package.

Triggers contain three pieces of information:

· Monitor : Establishes a definition of a set of objects on which to look for a particular condition

· Tester : A test on this set of objects for that condition

· Action : An action to take on that set of objects (and whatever internal state the Trigger may hold)

Trigger Monitors come in two basic flavors:

· Predicate-based : Contain a UnaryPredicate that establish a subscription for objects from the Plan API

· Time-based : Contain an explicit set of objects to be ‘tested’ at regular intervals

The TriggerManagerPlugIn is responsible for maintaining an active list of all Triggers in a cluster. The PlugIn establishes subscriptions for all predicate-based triggers, and sets “wake-up calls” for all time-based triggers. The TriggerManagerPlugIn determines which tests to run, and fires actions when tests are passed on monitored object sets (i.e., LogPlan objects and assets).

Through the ALP UI, user can initiate triggers. From the ALP UI, users can create a new triggers based on states and events on which they desire to be notified. Users will be able to:

· Select from a standard set of predicates

· Select from a standard set of actions (alert, rescind, task, e.g.)

Trigger UI provides a PSP, so software to encode predicates/actions is coordinated with software to establish triggers within cluster.

The current implementation (work in progress) supports the following initial set of Monitors/Testers/Actions (more will be defined as “standard” in the future). PlugIn developers can extend these classes or create their own.

· Monitors

30. TriggerTimeBasedMonitor

31. TriggerPredicateBasedMonitor

· Testers

32. TriggerStaleTester

33. TriggerThresholdTester: An abstract class with no current implementations. Some methods are completed, but a subclass is needed that implements the abstract method “double ComputeValue(Object[] objects)” that computes the threshold value.

· Actions : Alert, Rescind, Make “Stale,” Create Task

34. TriggerAlertAction: An abstract class with no current implementations. Some methods are completed, but a subclass is needed that implements the abstract method “Alert GenerateAlert(Object[] objects, PlugInDelegate pid).”

35. TriggerMakeStaleAction

36. TriggerMakeTaskAction: An abstract class with no current implementations. Some methods are completed, but a subclass is needed that implements the abstract method “Task GenerateTask(Object[] objects, PlugInDelegate pid).”

37. TriggerRescindAction

4.3 Plan API

The objective of the Plan API is to provide PlugIns with the ability to specify and interact with objects (data) of specific interest to that PlugIn. PlugIns can specify specific LogPlan objects and LDM assets of interest (through predicates) and the types of containers in which to store these objects. The implementation of the Plan API ensures transactional safety of Containers allowing multiple PlugIns to concurrently interact with the LogPlan. Previously called "Cluster Collections version 2" (CCv2), the Plan API represents a significant departure in interface and much improved stability from the original "Cluster Collections" (CCv1) API.

4.3.1 Plan API Concepts

For the user of the Plan API, most notably the PlugIn developer, the most important concept is the Subscriber. Using the Subscriber API which is exposed through EssentialPlugIn, the PlugIn may establish one or more subscriptions with the Plan API, and as a result receive objects of interest.

The Plan API provides the user with a flexible interface that allows the PlugIn to maintain its own collections of items. Using the Subscriber API, the user specifies its objects of interest via a JGL UnaryPredicate, and receives the objects of interest in an extension of a JGL Container, called a Subscription. For instance, in order to maintain a collection of expandable Tasks, a PlugIn could use the following code:

// Sample ExpanderPlugIn code

 private Subscription expandableTasks; // Subscription to hold collection

// The UnaryPredicate necessary to maintain collection of expandable Tasks
private UnaryPredicate expTaskPred = new UnaryPredicate() {
 public boolean execute(Object o) {
 if (o instanceof Task) {
 if ((((Task)o).getWorkflow() == null) &&
 (((Task)o).getPlanElement() == null))
 return true;
 else return false;
 }
 else return false;
 }
};

public void start() throws StateModelException {

 super.start();

 openTransaction();

 expandableTasks = subscribe(expTaskPred);

 closeTransaction(false);

}

public void execute() {

 Enumeration myTasks = expandableTasks.elements;

}

4.3.2 PlugIn Plan API Usage Model

PlugIns may choose to override start(). The start() method is the first point at which Subscriptions can be safely created.

PlugIns desiring to use the Plan API mechanism should implement the execute() method. The relationship of "execute()" to the Plan API is defined as:

· When your Subscriptions receive updates, you "awaken" ‑ execute() is called.

· You do something in execute() ‑ based on updated Subscriptions.

· When execute() is finished, you go back to sleep and the Plan API forwards any changes you have made to the Subscriptions to the rest of the Cluster.

· (repeat)

If execute() never relinquishes control (eg. non-terminating loop), the cycle is broken, and no other entity in the Cluster will ever be updated with any changes the PlugIn has made. From a PlugIn developer's perspective, you need to decide how much "work" each execute cycle can perform relative to how frequently you want to be "notified" of updates (execute() called). "Do I stuff in code that takes 3 days to calculate ... during that time I won't be updated of new inputs?" In cases like this, where you have a lot of work or work that needs to be de-coupled from the "Container update event cycle" ... you may want to look at pushing that into a background private thread

[image: image18.wmf]L

o

g

P

l

a

n

P

l

u

g

I

n

C

o

n

t

a

i

n

e

r

_

1

C

o

n

t

a

i

n

e

r

_

2

C

C

V

2

U

n

a

r

y

P

r

e

d

i

c

a

t

e

_

1

U

n

a

r

y

P

r

e

d

i

c

a

t

e

_

2

•

PlugIns

can have multiple Subscriptions.

•

PlugIns

can create Subscriptions on Initialization or can dynamically

create/destroy Subscriptions

Figure 18: The PlugIn has two subscriptions registered with the Plan API.

Subscription_1 causes objects that are selected by UnaryPredicate_1 to be placed in Container_1; Subscription_2 causes objects that are selected by UnaryPredicate_2 to be placed in Container_2.

Changes that are made to the Subscriptions that are returned by subscribe will eventually be propagated to other plugins in the cluster, as well as changing the local copies of the Subscriptions.

Objects that are added to Subscriptions are transmitted to other Subscribers.

The user can add objects to a Subscription. As these new objects are added to a Subscription, they become known to the Plan API and sent to the Subscription of any other Subscriber whose UnaryPredicate matches the object.

Objects that are removed from Subscriptions are transmitted to other Subscribers.

The user can also remove objects from a Subscription. As these new objects are removed from a Subscription, that change becomes known to the Plan API and is removed from the Subscription of any other Subscriber whose UnaryPredicate matches the object.

Objects that are explicitly changed are transmitted to other Subscribers.

Any plugin may also explicitly mark an object in a Subscription as "Changed."

Subscribers are Notified when any Subscription is Changed

When any Subscription is changed by the Plan API, the subscriber is notified. A method named execute() , is called in the subscribing PlugIn's interface. Subscribing PlugIns must implement the execute() method.

A Subscription can specify the actual Container to use.

In order to allow more efficient searching of Subscriptions, a second argument to subscribe can specify the Container instance to use for the real storage of the collection inside the returned Subscription. This Container can be an instance of any reasonable subclass of the JGL Container class, such as OrderedSet, HashMap, etc.

The inner Container can impose an ordering or more efficient representation of the collection so that the PlugIn has better (read only) access. Examples of this would be a List instance that kept the elements sorted in some useful way, or a Set that provided a method to index the elements by some accessor value.

4.3.2.1 Container Updates

A PlugIn can create a subscription at any time via the Cluster level call, implemented in EssentialPlugIn:

 mySubscription = subscribe(myPredicate).

This call may block for some time. Upon return, the returned Subscription will be filled with all objects known to the cluster that pass the specified predicate. Each time the execute() method is called, the Subscription (and the inner Container) will be updated with matching changes. All such matches will be propogated to mySubscription. In this way, the "ad hoc subscription" mechanism can be used to "dynamically" query for Log Plan Objects of interest.

Unlike previous infrastructure versions, the returned subscription is always "filled" as much as possible upon return. This obviously does not, however, preclude the subscription from changing in the future (e.g. new Assets being given to or taken from a cluster, etc).

4.3.2.2 The Plan API and Transactions

Generally, the "transaction" mechanism for PlugIns is defined by the execute() method. PlugIns have "Container level transaction safety" during the scope of the execute() method, thus, within the execute() method, it is sufficient to simply invoke the subscribe method. In some circumstances the PlugIn may need to provide "Container level transaction safety" outside of execute() cycles.

To safely invoke the subscribe method outside of the execute() method, use the following code sample, which provides container level transaction safety. Note that openTransaction and closeTransaction are methods provided in EssentialPlugIn. For an example of this pattern, see the EssentialPlugInTest code in the earlier section on PlugIn specifics.

openTransaction();

mySubscription = subscribe(myPredicate);

closeTransaction();

No object level transaction safety is provided. These "Container level transactions" only lock the PlugIn's subscriptions: other plugins in the cluster are free to run even while your PlugIn has an open transaction, as they each have their own separate collections.

A PlugIn may have multiple active threads of execution which do not rely on the execute() method being called. To allow other threads safe read and write access to their Subscriptions, the PlugIn must explicitly call openTransaction et al.

Other PlugIn base classes will offer different levels of automatic transaction handling.

4.3.3 Plan API Internal Concepts

Internally, the Plan API, contains a number of objects that interact to provide its external functionality. The central character is the Distributor. The Distributor acts as a transaction update clearinghouse, distributing updates to all interested subscribers. The Distributor also keeps track of a special "LogPlan" subscriber that maintains the definitive set of all LogPlan objects. The LogPlan not only tracks all changes, but also provides the content for all new subscriptions. A Subscriber manages a set of Subscriptions (each with its own Container), interacts with the Distributor, and manages transactions for its client (usually a PlugIn).

[image: image19.wmf]Component

PlugIn

Wrapper

MyPlugIn

Subscriber

Inbox

Outbox

Distributor

LogPlan

Subscriber

Distributor

distributes

Envelopes to all subscribers

who have registered a

subscription. Distributor also

consults

LogPlan

 subscribers

to “feed” new

PlugIns

with

existing data that matches a

Subscription Predicate.

C

o

n

t

a

i

n

e

r

s

Containers

are JGL objects

which contain

objects which are

subscribed to by

the

PlugIn

Cluster

Messaging

Component

PlugIn

Wrapper

MyPlugIn

C

o

n

t

a

i

n

e

r

s

Figure 19: Plan API Internal Concepts

4.4 LogPlan Object Creation

The interface LdmFactory contains factory methods that encapsulate the object constructors for all the standard LDM objects, the instantiable objects from the ALP object hierarchy. Generally, the return types of the factories are NewType, where Type is the LDM object being constructed. For example, the factory returns the type NewTask, where Task is the LDM object being constructed. The NewType interfaces each extend the basic Type interface with enough extra functionality to fully construct the object (e.g., setAttribute methods). There may be factories that return the basic Type if the arguments to the factory are enough to completely specify the object being constructed. The encapsulation provided by object factories prevents incorrect access to object constructors and setAttribute methods. The following code is an illustration of how PlugIns can create LogPlan Objects:

public interface LdmFactory

Methods

 NewTask newTask()

 NewWorkflow newWorkflow()

 NewConstraint newConstraint()

Each Domain PlugIn obtains a reference to its LdmFactory by requesting it from its cluster.

The following example shows how this method is defined in the component definition:

public interface ClusterServesPlugIn

/**

 * Called by a PlugIn on its Cluster to request a LdmFactory for

 * the creation of new ClusterObjects.

 */

// Methods

 public LdmFactory getLdmFactory(GenericPlugInServesCluster plugin)

The types returned by factories are extensions of the basic interfaces that support additional methods as required for creating a fully specified object. The following code illustrates this for the Workflow and NewWorkflow objects:

interface Workflow {

 Task getParentTask();

 Enumeration getTasks();

 Enumeration getConstraints();

 // etc…

}

public interface NewWorkflow

extends Workflow

// NewWorkflow extends Workflow with set methods and other methods useful for

// building valid objects.

Methods

 void setParentTask(Task parentTask)

 // setParentTask allows you to set the parent task or base task of a

 // Worflow.

 // myworkflow.setParentTask(mytask);

 /**

* Parameters:

 * Task - Should be a Task that is the task that was expanded to

 * create the Workflow.

*/

 void setTasks(Enumeration tasks)

 /**

* setTasks allows you to pass in the Tasks that were created during the

* expansion of the parentTask. These Task objects make up a Workflow

* (along with Constraint objects).

*/

 // myworkflow.setTasks(myenumoftasks);

 /**

* Parameters:

* Enumeration{Task} - tasks that make up the workflow

*/

 void addTask(Task newTask)

 /**

* addTask allows you to add a Task to a Workflow.

*/

 // myworkflow.addTask(mynewtask);

 /**

* Parameters:

* Task - Task to add

*/

 void setConstraints(Enumeration enumofConstraints)

 /**

* setConstraints allows you to add an Enumeration of Constraints to a

* Workflow. Each Constraint has a relationship with a pair of Tasks in a

* Workflow.

*/

 // myworkflow.setConstraints(myenumofconstraints);

 /**

* Parameters:

* Enumeration{Constraint} - constraints to add to workflow

*/

 void addConstraint(Constraint newConstraint)

 /**

* addConstraint allows you to add a Constraint to a Workflow.

*/

// Myworkflow.addConstraint(myNewConstraint);

 /**

* Parameters:

* Constraint: Constraint to add to workflow

*/

 void setDirectObjects(Enumeration enumOfAssets)

 /**

* sets the taskobject set for the Workflow. If the Workflow completely

* addresses the task, this should be the same as the taskobject set of

* the original task.

*

* Parameters:

* enumOfAssets--Enumeration{Asset}

*/

4.5 ALP Time

4.5.1 Overview

Within the ALP system, time is a multi-dimension aspect. These different dimensions allow execution and replanning to occur concurrently. Figure 20 illustrates these dimentions as Plan Time, Scenario Time, and Execution Time. In addition, it allows the user to explore future possibilities with respect to policies, business decisions, and simulated events (sometimes referred to as “what-ifs”).

Through the UI during a demonstration, the user will be able to control ALP ALPTime. This will allow control of the state of execution of events that are taking place during the demonstration with respect to ALPTime. This capability will allow the user to observe the state of the planning in the future or study "what-if" situations. ALPTime will also trigger PlugIns to initiate time-dependent activities such as a LDM PlugIn checking on asset status and reflecting changing external conditions. Also, PlugIns can evaluate the plan at a given scenario time against the actual state of execution.

[image: image20.wmf]Execution

 Time

Plan Time

Scenario

Time

C day

+20

+40

+60

+80

+100

+120

+140

+160

+180

+20

+40

+60

+80

+100

+120

+140

+160

+180

Scenario Time

locks the plan

in this domain

(below the line)

Planning remains

dynamic in this domain

(above the line)

Figure 20: Scenario Time

· Execution (system) Time ‑ The real time or wall clock time as reflected by the computer system clock.

· Scenario Time ‑ A point in time when the execution (real or what-if) of events can be observed. When the scenario time is in the past, the events that already took place cannot be changed. When scenario time is in the future, planned future events can be observed.

· Planning time ‑ A moment in time when planning for the future is taking place.

4.5.2 Interfaces

The scenario time is managed by a distributed server and will be obtained by accessing a time instance variable ALPTime through the ClusterServesPlugIn interface. For most PlugIns, ALPTime is read only. ALPTime can only be set forward.

4.5.2.1 Cluster Services

These are through the ClusterServesPlugIn interface.

· setALPTime() ‑ Sets the ALP scenario time to a specific time in the future.

When this time is not in the future, an exception is raised and a dialog box is displayed. Time is in milliseconds. Only UI PlugIns controlling the demonstration should use this method.

void setALPTime(long time);

· advanceALPTime() ‑ Advances the ALP scenario time a period of time in the future. This period of time will be positive, otherwise an exception will be raised, and a dialog box presented by the UI. The period of time is stated in milliseconds. Only UI PlugIns controlling the demonstration should use this method.

void advanceALPTime(long timePeriod);

· getALPTime() ‑ Obtains the current ALP scenario time expressed in milliseconds.

public long getALPTime();

4.5.2.2 PlugIn Wake Utilities

These are convenience methods implemented by PlugIn base classes (PlugIn Adapter).

A PlugIn might be interested in a resource at a certain time in the future. A wake signal could be used so that the PlugIn will determine the state of that asset at a given time. A wake signal could be used to initiate a LDM PlugIn to check on external database information at a specified time in the future or in a specified period of time in the future.

· wakeAt() ‑ Specifies a given time in milliseconds to stimulate a PlugIn, based on ALP scenario time.

void wakeAt (long wakeTime);

· wakeAfter() ‑ Specifies a period of time in milliseconds to wait, before stimulating a PlugIn. (based on ALP scenario time).

void wakeAfter(long delayTime) ;

· wakeAtSystemTime() ‑ Specifies a given time in milliseconds to stimulate a PlugIn, based on system time.

void wakeAtSystemTime(long wakeTime);

· wakeAfterSystemTime() ‑ Specifies a period of time in milliseconds, before stimulating the PlugIn.(based on system time).

void wakeAfterSystemTime(long delayTime);

5. PlugIn Paradigms and Strategies

In this section, we will discuss various approaches for dynamic replanning and execution monitoring from the perspective of different PlugIn prototypes. We have named these styles Expanders, Aggregators, Allocators, and Assessors. Each style of PlugIn interacts with the LogPlan through the same Plan API mechanisms (for more information on the Plan API, see Section 4 LogPlan Data Manipulation and Dyanamic Replanning).With respect to the PlugIn API and Plan API interactions, there are no software differences between these PlugIn styles. While these styles denote function responsibilities, there is no reason to preclude combining these functional responsibilities into a single PlugIn. If it makes sense however, the ALP philosophy suggests designing small modular PlugIns with specific functionality that can be dynamically loaded and used as required.

5.1 Expander PlugIn Behavior

5.1.1 Expander Basics

The Expander expands incoming directives into the implied Tasks necessary to complete the directive. Expander PlugIns contain specific knowledge regarding task expansion within an area of specialization. PlugIn instantiations in different Clusters or within a single Cluster might vary only by their associated knowledge. The Expander interacts with the LogPlan through the defined Plan API mechanisms. The Plan API mechanisms allow multiple PlugIns to register and receive specific LogPlan elements. The PlugIn is responsible for retrieving new expandable Tasks from the LogPlan, creating Workflows, and managing the satisfaction of the Workflows.

The PlugIn derives information from its stored knowledge, possibly in the form of templates, to create a Workflow. This information includes implied Tasks, task precedence relationships (Constraints), and task properties, such as expected duration. The Workflow embodies the logistic activities satisfying the input specified Task. The Expander PlugIn uses the LdmFactory to create a new Expansion object. The Workflow is placed in the Expansion. This Expansion is itself also a PlanElement object, which is added to the LogPlan through the Plan API.

The infrasture will not automatically publish additions or changes to plan objects as a result of PlugIns publishing related objects. For example, the infrastructure will not publish workflow subtasks as a result of a PlugIn publishing a new workflow. The PlugIn is responsible for publishing all new and modified plan objects. For example, when a PlugIn performs a publishChange() on a workflow subtask, it should perform a publishChange() on the workflow as well.

The following examples illustrate creating a Predicate (expandable tasks), creating a Task, and creating an Expansion PlanElement with an associated Workflow.

Examples

Creating a Predicate (expandable tasks)

UnaryPredicate myExpandableInputTasks = new UnaryPredicate() {

 public boolean execute(Object o) {

 if (o instanceof Task) {

 Task t = (Task)o;

 if ((t.getPlanElement() == null) && (t.getWorkflow()==null)){

return true;

 }

}

 return false;

 }

}

Code Example for Creating a Task

//In this particular example, a copy of the parent task is being created
NewTask subtask = getLdmFactory().newTask();

subtask.setParentTask(task);

subtask.setDirectObject(task.getDirectObject());

subtask.setPrepositionalPhrases(task.getPrepositionalPhrases());

subtask.setVerb(task.getVerb());

subtask.setPlan(task.getPlan());

subtask.setPreferences(task.getPreferences());

Code Example for Creating Workflow, Expansion, and PlanElement objects

public LdmFactory getLdmFactory() {

LdmFactory ldmf = this.getComponent().getLdmFactory(this);

return ldmf;

 }

NewWorkflow wf = getLdmFactory().newWorkflow();

wf.setParentTask(subtask.getParentTask());

subtask.setWorkflow(wf);

wf.addTask(subtask);

Task parentTask = wf.getParentTask();

AllocationResult estAR = createAR(); // can be null

NewExpansion myExpansion = getLdmFactory().createExpansion(parentTask.getPlan(), parentTask, wf, estAR);

5.1.2 Expansion / Constraint Management

An Expander is responsible for the creation of Preference information on its subtasks, and for the consolidation of allocationResults returned on its subTasks. The Expander needs to "distribute" the preferences placed on the task into constraints on its workflow and preferences on the subtasks created. When allocationResults are returned on the subtasks, it must use an AllocationResultAggregator to "roll-up" the results into results on the original task. The infrastructure will automatically calculate an aggregated reported AllocationResult for a completed Workflow. However, this result will not automatically propagate to the originator of the input task. It is the responsibility of the Expander to update the aggregated estimated AllocationResult which triggers the propagation of the result to the originator of the input task.

The automatic rescind propagation can be suspended for PlugIn control. The infrastructure will halt the rescind process when it encounters a workflow with the isPropagatingRescind boolean set to false (i.e., Workflow.setIsPropagatingRescind(false);). In this case, PlugIns are responsible for properly rescinding and rebuilding all related tasks and plan elements.

The Expander is responsible for the continued monitoring of the allocations of the subtasks to ensure that the constraints on the workflow are not violated. When they are, it is up to the expander to initiate replanning on the original task by modifying Workflow or subtask parameters.

An Expander PlugIn is responsible for creating workflows of subtasks for a given task, and for managing the constraints on that workflow. The Expander does not know to what assets the subtasks will be allocated, but it does know how good allocations of the individual pieces would contribute to or undermine satisfying the constraints of its Workflow. The expander can take one of several approaches to work towards maintaining its constraints, two of which are described here.

5.1.2.1 Parallel Allocation Approach

The Expander needs to create preferences on its subtasks so that the resulting allocations will cause the subtasks to satisfy the constraints on the workflow as well as satisfying the incoming preferences on the original task.

To this end, the Expander can use the provideEstimates() method on the Task object. For each subtask, the Estimator can create a sequence of preferences varying along some dependent variable, typically start or end time. That is, for each subtask, create a range of questions of the form: What would the allocation of this subtask have been like if I had expressed a preference for this particular day? The range of the preferences should be bound by the preferences on the incoming task. When the estimates are returned for each subtask, the Expander can then line-up the results to see what sets of preferences on each of the subtasks result in a total solution that satisfies the constraints on the workflow. It should then place these preferences on the subtasks and monitor them as they are allocated.

For example, suppose a task is bound to span C+20 to C+40 and expands into three tasks, where the end of each must precede the start of the next, i.e. END (Task1) <= START (Task2); END(Task3) <= START(Task2). The Expander can perform a series of estimates using the ‘provideEstimates’ interface on each subtask to find a set of preferences that satisfies that original task’s requirements as well as the constraints on the workflow.

START_TIME (Task1) : Independent Variable
END_TIME

C+20
C+22

C+21
C+23

C+22
C+24

START_TIME (Task2) : Independent Variable
END_TIME

C+20
C+28

C+22
C+28

C+24
C+29

C+26
C+31

C+28
C+32

START_TIME (Task3) : Independent Variable
END_TIME

C+28
C+38

C+30
C+40

C+32
C+42

C+34
C+45

Based on these results, the PlugIn could deduce that a reasonable solution would be to prefer Task1 to start on C+20, Task2 to start on C+22 and Task 3 to start on C+28. It could set these preferences and monitor returned results to ensure that contraints and incoming task preferences are maintained.

5.1.2.2 Serial Allocation Approach

The Expander can create one subtask at a time, set preferences to tend to push the subtask to the extreme of one axis (e.g., earliest or latest in time) and wait for it to allocate successfully. The Expander can then iterate by creating the remaining subtasks, adding them to the Workflow and giving them preferences that ensure that the constraints on the workflow are not violated. This approach is in general less efficient than the parallel approach described above, but should be considered when no high-quality predictors are available in the allocation path or when the nature of the subtasks may, in fact, be dependent on the allocation of related subtasks.

Given the same example as above, the PlugIn could proceed in sequence from Task1 through to Task3 in sequence. It could allocate Task1 to be as early as possible, and find that it takes from C+20 to C+22. It could then prefer that Task2 be as early as possible but after C+22, in which case it would be allocated (as we see above) from C+22 to C+28. Finally, the PlugIn could set preferences on Task3 to start no earlier than C+28 and end no later than C+40. This allocation would be successful and the PlugIn could then enter into a mode of continually monitoring the integrity of this expansion.

5.1.3 Aggregation and Composition

An Aggregator performs the inverse operations of an Expander by aggregating several incoming directives (Tasks) into an implied Task (a MPTask which references its multiple parent tasks). Aggregator PlugIns contain specific knowledge regarding task aggregation within an area of specialization. The Aggregator interacts with the LogPlan through the defined Plan API mechanisms. The Plan API mechanisms allow multiple PlugIns to register and receive specific LogPlan elements. The PlugIn is responsible for retrieving new expandable Tasks from the LogPlan. Note that the Aggregator functions very similarly to an Expander; the difference is that an Aggregator combines several tasks into a single MPTask, whereas an Expander breaks a single task into several tasks.

The PlugIn derives information from its stored knowledge, possibly in the form of templates, to create a Composition. The Composition contains the derived MPTask, constraints, task preferences (e.g., start time and duration), and an AllocationResultDistributor. The Aggregator PlugIn uses the LdmFactory to create new Aggregation PlanElements, one for each input task. A Composition contains references to each of these Aggregations. The Aggregations are themselves PlanElement objects, which are added to the LogPlan through the Plan API.

When it creates a Composition, it needs to aggregate the preferences on the individual tasks to form preferences on the Composition. Similarly, when it receives AllocationResults on the Composition subtask, it needs to distribute these results back to the individual tasks of the Composition using an AllocationResultDistributor. Control of this roll-up (distribution) of the AllocationResult information is similar to controlling roll-up for an Expansion and Workflow.

Examples

Aggregation is often used in processing transport Tasks. For example, an Aggregator PlugIn receives three tasks, each of which require transporting 100 people to and from the same locations, on the same dates. The PlugIn might aggregate these three tasks into one task to transport 300 people. Then, this single task could be allocated to a single asset (an airplane) by the Allocator.

Code Example for Creating Composition, Aggregation, and PlanElement objects

public LdmFactory getLdmFactory() {

LdmFactory ldmf = this.getComponent().getLdmFactory(this);

return ldmf;

 }

// Create Composition

NewComposition comp = getLdmFactory().newComposition ();

Enumeration parentTasks;

MPTask newCombinedTask;

AllocationResultDistributor myDistributor;

comp.setParentTasks(parentTasks);

comp.setCombinedTask(newCombinedTask);

comp.setDistributor(myDistributor);

/* Enumeration of parent Tasks; each parent Task obtained from an input Task via inputTask.getParentTask()

*/

Enumeration parentTasks;

comp.setParentTasks(parentTasks);

subtask.setComposition(comp);

comp.addTask(subtask);

/* Add plan elements for each input task */

AllocationResult estAR; // can be null

while (parentTasks.hasMoreElements()) {

 Task parentTask = parentTasks.nextElement();

 NewAggregation myAggregation = getLdmFactory().createAggregation (parentTask.getPlan(), parentTask, comp, estAR);

}

5.2 Allocator PlugIn Behavior

The Allocator allocates and schedules the Cluster’s assets in order to satisfy the aggregate allocatable workflows or set of tasks for which this PlugIn is responsible. PlugIns are specialized by domain and echelon so that Clusters operating in a specific domain and echelon use only the PlugIns that are relevant and to its specific allocation operations. Examples of specialization for Allocator PlugIns range from simple, next-available asset assignment to a full-blown Genetic Algorithm scheduler. In all cases, implementations of Allocator PlugIns add PlanElements to the LogPlan by selecting feasible allocation schedules and calculating scores with respect to the task preferences.

The Allocator runs continually, acquiring its list of allocatable Workflows or allocatable Tasks directly from the LogPlan (by registering for objects of interest). Once the workflow Tasks are analyzed for their requirements, the Allocator PlugIn obtains an enumeration of available assets that match required properties specified by these Tasks. Assets are acquired using the same Plan API mechanisms for retrieving any LogPlan object of interest.

Examples

Creating a Predicate (organization assets)

UnaryPredicate myOrgPredicate = new UnaryPredicate() {

 public boolean execute(Object o) {

 if (o instanceof Organization) {

 return true;

 }

 return false;

 }

}

Creating a Predicate (subtasks of Workflows)

UnaryPredicate myWorkflows = new UnaryPredicate() {

 public boolean execute(Object o) {

 if (o instanceof Workflow) {

 Enumeration e = ((Workflow)o).getTasks();

 while (e.hasMoreElements()) {

Task myTask = (Task) e.nextElement();

if ((myTask.getPlanElement()) == null) {

 return true;

}

 }

 return false;

}

 }

}

The Allocator PlugIn explores the feasible solution space (including previous allocations) and eventually selects those assignments that reduce the aggregate score for the Cluster. Allocator PlugIns modify the Cluster's LogPlan by assigning tasks to assets (creating an Allocation plan element), while minimizing the aggregate score for the assignments. Each Allocation has an AllocationResult that contains a relative score with respect to each Aspect (Preference) expressed as a Task requirement. If the Allocator cannot allocate within the thresholds defined by a preference (or preferences), the isSuccess flag on the AllocationResult must be set to false, and a FailedAllocation PlanElement must be created and published. Publishing the FailedAllocation results allows feedback to the task originator while preventing forward processing from occurring.

An allocation cost function may include:

· Increased penalty values for re-scheduling near-term tasks

· Increased penalty values for under utilized assets

· Penalty values associated with the timeliness requirement of the task

Allocations contain an estimated AllocationResult calculated by the local Allocator PlugIn and a reported AllocationResult calculated by the designated Cluster when the task is delegated for further processing. The Allocator PlugIn can use this reported information as well as previously calculated AllocationResult information in its allocation cost function or algorithm.

For the case where an Allocation (the "best" possible for a given operating condition) violates one of the task preference thresholds, the PlugIn should create an AllocationResult with isSuccess = false. This AllocationResult should be packaged in a FailedAllocation plan element (rather than an Allocation).

The purpose of the FailedAllocation is to allow the infrastructure to feed back a notification with the failed result, while preventing the "allocation" to propogate forward. When a FailedAllocation is created, the asset's RoleSchedule is not updated as with other plan elements (e.g., Allocations and AssetTransfers). For example, if the FailedAllocation was to a physical asset (a truck), the truck's RoleSchedule will not show unavailable for the time frame specified in the failed allocation result.

Examples

Creating a Predicate (PlanElements with Allocations)

UnaryPredicate myAllocations = new UnaryPredicate() {

 public boolean execute(Object o) {

 if (o instanceof PlanElement) {

 PlanElement pe = (PlanElement) o;

 if (pe instanceof Allocation) {

 return true;

 }

 }

 return false;

 }

}
Creating an AllocationResult

// Create a non-phased AllocationResult

double confidenceRating = 1.0;

boolean success = true;

int[] aspects = {AspectType.START_TIME, AspectType.END_TIME,

AspectType.COST};

double startTime = (double) myStartDate.getTime();

double endTime = (double) myEndDate.getTime();

double cost = 100.00;

double[] results = {startTime, endTime, cost};

AllocationResult myresult =

getLdmFactory().newAllocationResult(confidenceRating, success, aspects, results);

Allocator PlugIns may create Expansions in the process of allocating assets to Tasks that depend on the time-varying allocation of assets, i.e., Tasks that depend on assets or requirements that change over time. For the example of “transport 20 trucks,” the Allocator may allocate portions of this task to multiple assets. Thus, it would create a Workflow with two subtasks, “move 15 trucks” and “move 5 trucks,” and assign these Tasks to different Clusters. The following examples illustrate two specific situations where the Allocator creates an Expansion:

· The GetLogSupport Task specifies that the Allocator assigns this Task to all its “subordinate” cluster assets. Thus, the Allocator generates an Expansion based on the knowledge of current assets, i.e., which organizations are subordinates. These subordinate organization assets can vary over time as the Cluster’s relationship with other Clusters changes. As a consequence of varying subordinate organization relations, the PlugIn modifies the Workflow and Allocations as organizations report for duty.
· The Manage Task specifies that the Allocator maintain inventory objectives and policies at a supply point with respect to time-varying demand generated by the organization’s customers. To maintain these objectives, the Allocator generates a single Expansion whose parentTask is the Manage Task. Thus, the Allocator can modify this Task as its requirements change over time.
The Allocator PlugIn handles Tasks (Workflow elements) in one of several ways:

· Assigns locally owned assets to Tasks

· Consolidates rate-based requirements into a single task with an associated allocation

· Assigns the Task to an organization with the necessary capabilities (which may include the current Cluster or a remote Cluster)

The Cluster infrastructure, invisible to the Allocator PlugIn, performs these operations:

· When the Allocator assigns Tasks to assets, the infrastructure transmits any implied directives and orders to the appropriate asset.

· When the Allocator assigns Tasks to assets, the infrastructure updates the RoleSchedule of that asset.

· When a Task is delegated to another Cluster, the infrastructure creates a directive from that Task and sends it to the target Cluster.

5.3 Assessor PlugIn Behavior

Assessors need to monitor the internal consistency of the LogPlan over and above the monitoring of the Allocators, Expanders and Aggregators. The Assessors need to monitor changes in assets that represent underlying assumptions for the creation of plan elements, including real world events. The Assessor performs specified actions when the expected time-phased execution of the tasks is not conforming to expectations.

Assessor responsibilities can be described as a broad set of monitoring activities including:

Task Compliance Monitoring where the Assessor PlugIn obtains an enumeration of PlanElements that are currently scheduled for execution. The Assessor PlugIn identifies the sub-set of assets involved in currently executing Tasks and compares relevant compliance features identified in the Task with corresponding signatures of real-world entities. In the event that a Task will not complete as scheduled (e.g., asset is rendered inoperative or destroyed), the Assessor can update the corresponding Asset object (its RoleSchedule) so that the Allocator will not use this asset in its next allocation cycle.

Task Anticipatory Monitoring begins with declarative constraints added by the Expander and Allocator to Workflows describing real world events that cannot be violated during Task execution. The Assessor analyzes these constraints and selectively monitors real world events related to those constraints. This includes current situation as well as forecasts of future events (e.g., weather, transit capacity, etc.). In the event Workflow constraints are violated in the real-world, the Assessor PlugIn can initiate appropriate action identifying the affected tasks and constraints with respect to the corresponding LogPlan elements. These actions can prompt relevant PlugIns to assess the current state and revise their previous outputs.

Task Score Monitoring where score values associated with a task exceed threshold values established by the Task originator. In this event, the Assessor can generate a Directive to the Cluster's superior or the Cluster’s customer that originated the Task. In its next iteration, the Allocator may or may not change the PlanElement that had this high score because the aggregate score value for the Cluster may or may not be improved by a different allocation.

Task Completion Monitoring updates the status of Tasks to indicate that they have executed to completion in the real world. This information allows the Cluster to remove stale information regarding planned actions that have completed.

Figure 21 illustrates a score value in relation to an exception threshold. Whenever the score value of a plan component exceeds some specified threshold, the Assessor initiates appropriate action. These actions can include generating an Alert to a user or initiating a task or AllocationResult to a superior organization.

[image: image21.wmf]Score

threshold

quantity @ time

Aspect:

Figure 21: Score Values and Exception Threshold

Figure 22 illustrates the operation of the task compliance assessment. Here the projected start and stop times of the tasks within the plan are compared to their real world counterparts. When actual real-world execution of the tasks threaten the timely completion of the planned actions, messages and Alerts can be generated. Slack time calculations are used to predict the overall plan completion. Normal situations that will be monitored are combinations of task start, task completion, and task duration.

[image: image22.wmf]Task F

Task E

Task D

Task C

Task B

Task A

Figure 22: Task Compliance Assessment

In MB5.1, a GenericAsssessor is provided to allow developers to work with assessors that are tailored to monitor specific variables against specific conditions and to take specific actions as a result.

A Trigger mechanism will be added to the infrastructure in the upcoming MB5.2 release. This mechanism will allow PlugIns to specify actions to be taken when certain states are reached in the LDM. In particular, triggers can indicate relationships between plan elements and particular assets or other LDM objects like Policies. Actions that can be triggered from these triggers include alerting (notifying or soliciting information or approval from a human operator), rescinding or otherwise replanning.

5.4 Integrated PlugIn Behavior

5.4.1 Interactions between Expansion and Allocation

It is important that the roles of Expanders and Allocators be kept clear in the ALP design. While there are cases where a single merged "Allocator-Expander" or "Expander-Allocator" may be used, this hybrid is the exception and not the rule. There should be clear understanding of the roles and responsibilities of the Expanders and Allocators in the process of task decomposition. An Expander needs to create workflows and subtasks and place preferences on them. The Expander owns these objects and no Allocator should be able to modify them. The Allocator creates Allocations and is responsible for filling in the "reported" and "estimated" fields of the Allocation; no Expander should be able to set these values. Further, it is important that Expanders and Allocators make no assumptions about one another, that they are developed by the same developers (and can thus use some private "shared" info) or even are co-resident in the same Cluster.

The proper negotiation between Expander and Allocator should be as follows. The Expander should be setting preferences on subtasks; the Allocator should wait for these preferences to be set before attempting to allocate. The Allocator will create and modify its allocations; the Expander can subscribe to allocations on its subtasks and monitor when allocation results are available. It can then modify preferences or indeed workflows appropriately as a result.

Consider the following example. If a task requires 10 objects of a given type, this information must be specified as a preference on the task. The task may then be allocated by an allocator to some provider. The provider may return with a response that it can only provide 8. The customer-side allocator PlugIn will fill in this response in its "reported" slot on the allocation. The estimator will subscribe to changes on this allocation and note the shortfall. The expander has a choice at this point: it can accept the 8 for now and allow the provider to continue to try to fill the complete order for 10, or it can change the preference to 8 (indicating to the provider that it need not work any more to fill the order). In the latter case, the expander can create a new subtask and add it to the same workflow as the original task indicating a need for 2 more items. This subtask will then be allocated, possibly to another provider, by the allocator, while the Expander monitors.

[image: image23.jpg]
Figure 23: Expansion and Allocation

5.4.2 Trade-Offs and Management of Preferences

When an Expander expands a task, it attempts to distribute the preferences placed on that task onto the subtasks of the workflow in such a way as to best satisfy those original preferences. This distribution is by no means a straightforward process. As the Expander monitors allocation results on the subtasks, it may note that allocations have failed due to threshold violations (no allocation took place because an expressed threshold precluded it). It may also note that the individual allocations are so as to be sub-optimal in the aggregate.

For each individual subtask, the Expander can perform a trade-off analysis between two or more aspect dimensions to see how different allocations would be performed. As above, the Expander can generate a series of preferences expressing trade-offs between aspect dimensions and receive back estimates for each of these preferences. It can then find a preference setting for each subtask that is optimal in the aggregate even if some particular subtask is being solved sub-optimally.

For example, an Expander may require 100 widgets around C+20 and while minimizing costs. It would be willing, say, to compromise somewhat on date to minimize cost. It can perform a trade-off analysis using the provideEstimates() method to determine how costs change as a function of time:

DATE
COST

C+10
$1.5M

C+15
$1.3M

C+19
$1.0M

C+22
$0.9M

C+25
$0.8M

From this data, the PlugIn could determine, say, that setting the date preference to C+19 would give it the desired trade-off of timeliness and cost.

5.4.3 Propagating Preferences, Rescind, and Notifications

PlugIns are responsible for the propagation of Preference, Rescind, and Notification (AllocationResult) information through the PlanElements that they have published to the LogPlan. While the infrastructure provides some automated support, it must by used judiciously by the responsible PlugIn. PlugIns are responsible for monitoring the PlanElements and associated tasks (that they have published) as appropriate to take required actions to ensure the propagation of Preference, Rescind, and AllocationResult information. Typically, the infrastructure will propagate this information to the next PlanElement, then the responsible PlugIn will determine the subsequent actions.

PlugIns must be aware of the dynamically changing LogPlan and update the plan elements for which they are responsible. These modifications to plan elements are the direct consequence of propagating preferences, rescinds, and notifications. PlugIn responsibilities include:

For PlugIns that create Expansions: register for changes to the Expansion plan element ‑

· Watch for changes to the associated task for Preference propagation or rescind propagation: expansion.getTask()

· Watch for changes to reportedAllocationResult for AllocationResult propagation: expansion.getreportedAR()

For PlugIns that create Allocations: register for changes to Allocation plan elements ‑

· Watch for changes to the associated task for Preference propagation or rescind propagation: allocation.getTask()

· Watch for changes to reportedAllocationResult for AllocationResult propagation: allocation.getreportedAR()
5.4.3.1 Preference Propagation

Preference propagation is primarily the responsibility of the “Expander” PlugIn or the PlugIn that created the Expansion PlanElement. This PlugIn should monitor the state of the parent task of the Expansion and update the workflow subtasks as appropriate when the preferences of the parent task change. In addition, this PlugIn should monitor the PlanElement for updated AllocationResults and modify the workflow subtasks as appropriate to achieve the objectives of the parent task.

The following steps describe the PlugIn and infrastructure actions:

38. PlugIn modifies Task preferences

39. PlugIn performs publishChange(Task)

40. Local infrastructure LP propagates change to next downstream task based on associated Allocation

41. Downstream infrastructure LP updates task by performing publishChange(Task)

42. PlugIns subscribed to this task are notified and added to subscription “change list”

5.4.3.2 Notification (AllocationResult) Propagation

Notification propagation is the responsibility of the PlugIn that created a particular PlanElement, Expansion, Allocation, or AssetTransfer. Whenever the estimatedAllocationResult is entered or modified by a PlugIn, these values are automatically propagated to the originator of the associated Task, specifically, as the reportedAllocationResult of the next upstream PlanElement. When a reportedAllocationResult is modified (by the Cluster infrastructure), it is the responsibility of the PlugIn that created this PlanElement to decide whether to update the estimated values or change its collection of allocations (i.e., replan). Example decision criteria can include percent deviation between the reported and estimated or remaining time before commitment time. Figure 24 illustrates the notification flow of AllocationResult information.

The following steps describe the PlugIn and infrastructure actions:

43. PlugIn modifies/adds estimatedAllocationResult on a plan element

44. PlugIn performs publishChange(Allocation), performs publishAdd(Allocation), or performs Add/Change/Remove a FailedAllocation

45. Local infrastructure LP propagates change to next upstream plan element by copying this information to the reportedAllocationResult and performs publishChange(PlanElement)

46. PlugIns subscribed to this plan element are notified and added to subscription “change list”

[image: image24.wmf]PlanElement

Allocation

estAR

rptAR

PlanElement

Expansion

estAR

rptAR

PlanElement

Allocation

estAR

rptAR

•

PlugIns propagate notifications by updating

estimatedAllocationResult

•

Infrastructure LP updates

reportedAllocationResult

•

Propagation independent of cluster boundaries

Infrastructure responsibility

PlugIn responsibility

Figure 24: Notification Information Flow

5.4.3.3 Rescind Propagation

Rescind propagation is controlled by the PlugIns that create Expansions and Workflows. If the Workflow isPropagatingRescind() = true, the Expansion, Workflow and associated subtasks are removed. If this flag is false, these plan objects remain in the LogPlan, even though the original parent task is removed. The PlugIn is responsible for maintaining and removing these plan objects.

The following describes the actions associated with removing specific plan objects:

PlugIn removes an expanded Task, publishRemove(Task) ‑

47. task is removed

48. If Workflow isPropagatingRescind() = true, Expansion, Workflow and subtasks are removed

49. If false, responsibility of plugin to manage ‘orphaned’ PE’s

50. see removal of allocated Task

PlugIn removes an allocated Task, publishRemove(Task) ‑

51. Allocation associated with the task is removed

52. If allocated to an organization, remote downstream Task is removed

53. see removal of expanded Task

PlugIn removes a Workflow, publishRemove(Workflow) ‑

54. Expansion, Workflow and subtasks are removed

55. see removal of allocated Tasks

PlugIn removes an Expansion, publishRemove(Expansion) ‑

56. same as removing a Workflow

5.4.4 Variable Time Windows

Different PlugIns may want or need to present variable levels of detail in their plan as a function of time. That is, there may be an implicit planning horizon over which a certain level of detail is computed for the logistics plan, and beyond which some lesser detail is provided.

In such a case, a PlugIn needs to access ALPTime. In addition, a PlugIn can register to be notified of a particular point in time or when a certain time period has past. When the scenario time changes, the PlugIn will be able to fill in the missing levels of detail on the parts of the plan that have now fallen into a more detailed planning horizon.

5.5 UI Architecture Overview

The ALP UI architecture is distributed. Components of the UI architecture reside in the ALP Clusters, providing services to visualizations that may reside on additional platforms.

Most ALP UI applications are built upon a LEIF InfoBus. The LEIF InfoBus enables individual views within a UI application to be integrated upon a common data model and controller. Data is placed on the LEIF InfoBus by LEIF Data Producers that communicate with servers in the ALP Clusters. Note that the same software components that act as Data Producers in LEIF appear as clients when viewed from the ALP Cluster perspective.

[image: image25.wmf]TPFDD

Display

TPFDD

Display

TPFDD

Display

TPFDD

Display

TPFDD

Display

TPFDD

Display

Policy

Producer

Organization

Producer

Inventory

Producer

TimeSlider

Producer

Rainbow

Producer

TPFDD

Producer

Aggregating

PlanServer

(TPFDD)

Cluster

PlanServer

Cluster

PlanServer

Cluster

PlanServer

Cluster

PlanServer

Cluster

Log Plan

Server

Views

Debugging UI

Other web based browsing

LEIF

Info Buses

Figure 25: ALP UI Architecture

When LEIF is started, LEIF Data Producers such as the TPFDD Data Producer establish HTTP connections through Cluster LogPlanServers which manage connections to Plan Service Providers. Log Plan objects in ALP Clusters are sent from Plan Service Providers in response to requests for data. Queries for data are sent and data is returned to the Cluster (in the case of Edit commands) using URL parameter strings and HTTP POST data. The Log Plan objects returned from the Cluster are encoded in XML and transmitted over the HTTP connection between the Cluster and the LEIF Data Producer.

LEIF Data Producers receive external data (from the ALP clusters) and create LEIF DataItems which are then placed on a LEIF InfoBus. Within the LEIF framework, multiple visualizations, such as bar charts and TPFDD displays, retrieve information from the Data Producers, and present it to the user. For more details on the LEIF framework and its usage in the UI architecture, see Section 6.

Client applications (either LEIF Data Producers or stand-alone applications) may communicate directly with Plan Service Providers or they may communicate with “Aggregation LogPlanServers”. Aggregation servers integrate information from a number of Plan Service Providers in different Clusters and provide XML encoded objects containing the requested information from the distributed LogPlan.

In the Cluster, a PlanServerPlugIn launches a LogPlanServer and provides Cluster PlugIn services to it The LogPlanServer listens for URL connections; when an incoming request is received, it passes the request to a set of Plan Service Providers to answer the request. A Plan Service Provider encapsulates the “business rules” for answering a request. It is designed to support the information needs of one or more UI clients. Thus, the LogPlanServer acts as a switch or pass-through to accept URL connections and match them with the appropriate Plan Service Providers.

[image: image26.wmf]PlanServer

PlanServiceProviders

PlanServiceProviders

PlanServiceProviders

PlanServiceProviders

PlanServiceProviders

PlanServiceProviders

PlanServerPlugIn

PlanServerPlugIn

User Interface

User Interface

Cluster

Figure 26: Plan Server PlugIn
Each Plan Service Provider has access to Cluster LogPlan data via the standard PlugIn interface. A Plan Service Provider has access to additional services offered by the LogPlanServer (see Section 7) as well as URL parameters and POST data derived from the incoming client HTTP stream. In this architecture, an application can communicate directly with a Plan Service Provider and pass query parameters or other information. Plan Service Providers support both “read-only” and “update” interactions with the LogPlan. Although there is no requirement for a one-to-one mapping between LEIF Data Producers and Plan Service Providers, this organization appears to be the most sensible. For example, the TPFDD Plan Service Provider could be customized to recognize queries from the LEIF TPFDD Data Producer and to produce TPFDD objects in a form that the LEIF TPFDD Data Producer knows how to decode.

In addition, Plan Service Providers can be dynamically loaded into the appropriate Clusters, using the services of the LogPlanServer as explained in Section 1. Most ALP user interfaces will be constructed with Java Beans that are integrated with the LEIF framework. The LEIF framework provides mechanisms to insure that relevant consumers (views) are notified of changes as well as orchestrating data changes by producers within “transaction” boundaries. Although most ALP UI visualizations will be based on LEIF, the UI architecture is “open” and can support browser based viewing and editing of LogPlan data. Web-based UI applications can be designed for simple HTML based browsing of the LogPlan or more complex interactions with content supplied by Plan Service Providers.

5.6 LDM PlugIn Behavior

5.6.1 Overview

LDM PlugIns support mapping contemporary (or external) data into the ALP society. Contemporary data can include files in the local file system, databases, and Web pages hosted by computers at remote or local sites. These PlugIns provide automated updating and lazy evaluation of asset property values as they are required. LDM PlugIns interact directly with the LogPlan in the same manner as all other PlugIns. LDM PlugIns can perform their functions as a result of initialization or when triggered by a LogPlan data access.

LDM PlugIn developers will have a different set of interests when compared to the developers of Domain or UI PlugIns. Their role is to understand the external data sources and provide access to that data. Just as Domain PlugIns embody domain knowledge, the LDM PlugIns domain is the data resource to which they provide access.

At a high level, LDM PlugIns provide a means to bring data from contemporary (or external) data sources into the ALP society of Clusters. An LDM PlugIn accomplishes this by accessing the external data source it knows about, and creating or modifying LDM objects directly, based on that data.

5.6.2 SQL Reference LDM PlugIn

This example LDM PlugIn is based on the ALP FY98 demonstration JDBCPlugIn. It uses access to an Oracle database via JDBC to create LDM objects requested through a specially formatted ".q" file. The plugin expects at least one PlugIn parameter (via EssentialPlugIn.getParameters). The first parameter is interpreted as the name of a "query file." We look for this using the ConfigFileFinder (see class for details). Any other parameters are interpreted as query parameter settings, as though they were parsed from a global section of the query file.

plugin=mil.darpa.log.alpine.plugin.sql.LDMSQLPlugIn(foo.q, NSN=12345669)

The query file is a description of one or more queries to execute on behalf of the plugin. Comment lines (lines starting with "#") and empty lines are ignored. Lines starting with "%" indicate the start of a "query section" and the rest of the line names the QueryHandler class to use. All other lines are of the form "parameter=value" where the parameter values are made available to the current query. Initial parameter settings (before a "%" line) are considered global and are inherited by all following queries. In addition, a special case pseudo-query of "%Global" allows additional entries into the global table.

Example "Query" File for Prototype Creation:

non live eiger jtav query

%SQLAssetPrototypeProvider

Assetclass = PhysicalAsset

%ECPropertyProvider

Database=jdbc:oracle:thin:@eiger.alpine.bbn.com:1521:alp

Username=alp_plugin

Password=alp_plugin

query = select substr(model_desc||' '||lin_desc,1,30) model_desc, \

length, width, height, max_wgt, \

sq_ft, cubic_ft, cgo_cat_cd \

from equipment_characteristics \

 where nsn = (:nsns) \

and lin_index=(select min(lin_index) \

 from equipment_characteristics \

 where nsn = (:nsns))

%Global

Database=jdbc:oracle:thin:@eiger.alpine.bbn.com:1521:alp

Username=alp_plugin

Password=alp_plugin

query = select nsn, sum(qty_oh), nomenclature \

 from jtav_equipment \

 where substr(nsn,5,13) in (:niins) \

 and uic4 in (:uics) \

 group by nsn, nomenclature

Example "Query" File for Instance Creation:

#Tank: M1A1

%SQLAssetCreator

niins = '010871095'

#Tank: M1A1, Recovery Vehicle: M88A1, Helicopter: AH-64A, Howitzer: M109A6, Fighting Veh: M2A2 W/ODS, Fighting Veh: M3A2, Helicopters: UH-60A, EH-60A, OH-58D, HMMWV M998, HMMWV M985, HEMMT M978 WOWN (Tank), CommandPostCarrier: M57782, PersonnelCarrier: M113A3, TrackedPersonnelCarrier: M981, PLS Truck: M1075, PLS Trailer: M1076, PLS Flatrack: M1077, HET Tractor: M1070, HET Trailer: M1000

%SQLAggregateAssetCreator

niins = '011007672'

#niins = '010871095', '001226826', '011069519', '013050028', '014059886', '012487620', '010350266', '010820686', '011255476', '011077155', '011007673', '011007672', '010684089', '012197577', '010853792', '013042278', '013035197', '013077676', '013189902', '013038832'

%Global

Database=jdbc:oracle:thin:@eiger.alpine.bbn.com:1521:alp

Username=alp_plugin

Password=alp_plugin

#query = select '8115001519953' nsn, container_20_ft_qty qty_oh, '20 FT CONTAINER' nomenclature \

from ue_summary_mtmc \

where substr(uic,1,4) in (:uics)

#%SQLAggregateAssetCreator

5.6.3 XML Reference LDM PlugIn

5.6.3.1 Overview

This LDM PlugIn follows the same model as the LDMSQLPlugIn, in that it is a one-time PlugIn – it runs once, populating the Cluster with LDMObjects, then is dormant. It gets the information for the LDMObjects from an XML file (*.ldm.xml). This PlugIn expects only one parameter (via PlugInAdapter.getParameters). This parameter is interpreted as the name of the .ldm.xml file. This file is found using ConfigFileFinder (see alp.util.ConfigFileFinder for details).

plugin=mil.darpa.log.alpine.plugin.ldm.LDMXMLPlugIn(foo.ldm.xml)

The .ldm.xml file is a description of one or more LDM objects to add to the PlugIn's LogPlan. W3C XML standards are followed in the layout of the file. The layout follows a basic tree design. That is, an Asset's property groups will appear as child nodes of the "parent" asset.

5.6.3.2 PlugIn Startup Parameters

The LDMXMLPlugIn follows the same basic startup format as the LDMSQLPlugIn:

plugin=mil.darpa.log.alpine.plugin.ldm.LDMXMLPlugIn(foo.ldm.xml)

This line should show up in your Cluster's ".ini"" file. Example configurations including sample DTD and XML files can be found in the $ALP_INSTALL_PATH/configs/LDMTestConfig directory in the distribution.

/**

 * An instance of an LDMPlugIn that reads a Cluster's startup data

 * from an XML file (of the form *.ldm.xml).

 *

 * This PlugIn is invoked with one parameter, the name of the

 * .ldm.xml file to be parsed. This file is currently looked for

 * in the local directory. Additional file search capabilities will

 * be added. Example from a sample cluster.ini file:

 * <PRE>

 * plugin=mil.darpa.log.alpine.plugin.sql.LDMXMLPlugIn(foo.ldm.xml)

 * </PRE>

 *

 */

public class LDMXMLPlugIn extends LDMEssentialPlugIn

{

 private Properties globalParameters = new Properties();

 private String xmlfilename;

 private File XMLFile;

 private Enumeration assets;

 private XmlDocument doc;

 public LDMXMLPlugIn() {}

 protected void setupSubscriptions() {

 subscriber = getSubscriber();

 try {

//subscriber.openTransaction();

 getParams();

 parseXMLFile();

 //subscriber.closeTransaction();

 } catch (SubscriberException se) {

 se.printStackTrace();

 }

 }

 /**

 * Do nothing

 */

 public void execute() {}

 /**

 * Parse parameters passed to PlugIn

 */

 private void getParams() {

 Vector pv = getParameters();

 if (pv == null) {

 throw new RuntimeException("LDMXMLPlugIn requires a parameter");

 } else {

 try {

Enumeration ps = pv.elements();

String p = (String) ps.nextElement();

globalParameters.put("XMLFile", p);

xmlfilename = p;

 } catch(Exception e) {

e.printStackTrace();

 }

 }

 }

 private void parseXMLFile() {

 try {

 XMLFile = ConfigFileFinder.locate(xmlfilename);

 if (XMLFile == null) {

throw new RuntimeException("LDMXMLPlugIn: Can't find XML input file " + xmlfilename);

 } else {

InputSource input = Resolver.createInputSource(XMLFile);

doc = XmlDocument.createXmlDocument(input, true);

assets = getAssets(doc);

while(assets.hasMoreElements()){

 Asset asset = (Asset)assets.nextElement();

 publishAdd(asset);

}

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 Enumeration getAssets(XmlDocument doc){

 Properties pt = null;

 Node root = doc.getDocumentElement();

 Enumeration a = null;

 if(root.getNodeName().equals("ClusterAssets")){

 NodeList nlist = root.getChildNodes();

 int nlength = nlist.getLength();

 // The following call registers all protoypes

 // found in our document, and returns to us

 // all the instances found in the document.

 XMLAssetCreator xac = new XMLAssetCreator(this, getCluster());

(Properties)globalParameters.clone(),

 assets = xac.getLDMAssets(root);

 }

 else{

 throw new RuntimeException("unrecognized field: "+

 root.getNodeName());

 }

 return assets;

 }

 public Asset getPrototype(String typeid) {

 Properties pt = null;

 XMLPrototypeProvider xpp = new XMLPrototypeProvider(this, getCluster()

 if (xpp.canHandle(typeid))

 return xpp.getAssetPrototype(typeid, doc);

 return null;

 }

 public void registerAsset(Asset asset) {

 }

6. Logical Data Model

6.1 Introduction

As stated elsewhere in this document, the Cluster PlugIns (Expander, Aggregator, Allocator, Assessor, and UI), interact with and obtain access to data via the class definitions published in the ALP Logical Data Model (LDM). In essence the LDM provides the lingua franca of the ALP System. Included in the LDM are not only the classes necessary to obtain instances of domain-specific objects, but also the classes necessary to communicate within and without ALP Clusters. Both Domain and UI PlugIns require an intimate knowledge of both of domain-specific and ALP-specific classes to perform their functions – they maintain a foot in both camps.

6.2 Scope and Goals

There are two overriding concerns with respect to the LDM that must be understood before a realistic set of design principles can be identified: size and ease of extensibility. The size or scope of the ALP LDM is enormous. Looking at the number of distinct potential Asset types for ALP, there are 4,000,000 NSNs alone for equipment and supplies. In addition to equipment and supplies, people and organizations (subtypes of Asset), and ALP-specific objects that include Messages (Directives and Exceptions) and the LogPlan (Workflow, Allocations, and Schedules) have been identified. Instead of attempting to define and build the entire LDM, we expect to address the portion of the LDM relevant to a particular year’s demo scenario. For example, in FY98 we will address the only the portions of the LDM that are relevant to the FY98 demo. Since we will only address a small subset of the LDM in a given year, it is expected that the form of the LDM will not be uniform across all subtrees. In addition, it is expected that the ALP community at large will contribute to the development of the LDM. As people identify objects that are relevant to a particular year’s demo, the objects will be added to the LDM. By utilizing the knowledge existent in the ALP community, ALPINE hopes to foster a sense of ownership in the community such that the LDM will be developed by a large community of people who all have a stake in its success.

The LDM must also fundamentally support the definition and use of continuously evolving real-world entities. These entities are expected to have both multiple and changing capabilities and roles as new uses of, and relationships between, the various entities are identified – potentially at runtime. Taken together, the scope and extensibility requirements of the LDM immediately call for a design approach, which will allow the developers of the LDM to:

· Develop and implement only what will be used in the yearly demonstrations

· Partition the LDM into chunks or manageable size

· Introduce new and changed entity representations without perturbing previously defined entities

As we will see below, strict classical hierarchical object decomposition alone fails to satisfy these requirements. Other techniques must be employed in conjunction with classical hierarchical decomposition to meet the requirements of the LDM.

6.3 Design Overview

As stated earlier, the design approach used in the development of the LDM must permit a continuously evolving and extensible model for over 4,000,000 distinct object types (instances are expected to be in the billions). The selected design approach for the LDM employs several techniques to address these challenges. These techniques include a mix of classical hierarchical decomposition (i.e., inheritance), prototyping, and the use of ALP Capabilities and Roles.

6.3.1 Classical Hierarchical Decomposition (Inheritance)

The benefits and uses of classical hierarchical decomposition (inheritance) are widely discussed in the literature on object-oriented analysis, design, and programming techniques, and will not be discussed further here. For those unfamiliar with this subject, a brief list of references is included at the end of this section.

Figure 27 is a representation of what a typical class hierarchy for fixed-wing aircraft would look like using strict hierarchical decomposition alone. By the time we get to the third or fourth level where we are at the abstract FWAircraft class, we already have tens of thousands of distinct object types. By the time we get to the C130 class, we are in the millions of distinct object types. Every time we come up with a new type of fixed-wing aircraft we must develop a new class. This approach rapidly becomes unwieldy and can cause massive perturbations of existing applications if any intermediate class is modified.

[image: image27.wmf]1

0

0

N

1

,

0

0

0

,

0

0

0

s

N

1

0

,

0

0

0

s

P

h

y

s

i

c

a

l

A

s

s

e

t

P

l

a

t

f

o

r

m

A

i

r

P

l

a

t

f

o

r

m

R

W

A

i

r

P

l

a

t

f

o

r

m

F

W

A

i

r

P

l

a

t

f

o

r

m

C

-

5

C

-

1

3

0

E

n

g

i

n

e

A

i

r

P

l

a

t

f

o

r

m

E

n

g

i

n

e

R

W

E

n

g

i

n

e

F

W

E

n

g

i

n

e

P

W

J

2

5

5

G

E

G

7

1

8

P

W

J

2

5

5

S

N

X

Y

Z

1

2

3

0

.

.

1

C

-

1

3

0

S

N

:

A

1

2

3

4

0

.

.

1

g

e

n

e

r

a

l

i

z

a

t

i

o

n

i

n

s

t

a

n

c

e

o

f

r

e

f

e

r

e

n

c

e

w

/

c

a

r

d

i

n

a

l

i

t

y

I

n

s

t

a

n

c

e

C

l

a

s

s

P

r

o

t

o

t

y

p

e

I

n

s

t

a

n

c

e

n

.

.

.

n

Figure 27: Classical Inheritance Approach

6.3.2 Prototyping

Prototyping, also known as delegation, is one of the techniques employed in the design of the LDM to accomplish the following:

· Reduce the overall number of classes to a manageable size

· Permit the LDM to be partitioned such that a Cluster may use only required portion of the model needed to perform its function

· Introduce new and changed representations at runtime

 “A prototype represents the default behavior for a concept, and new objects can re-use part of the knowledge stored in the prototype by saying how the new object differs from the prototype.”[L 86] As shown in this definition of prototyping, the prototyping discussed here is not the same prototyping that is referred to as “rapid application prototyping” or used in several programming languages. Prototypes will be used in the LDM to handle small object variances such as in the type of engine used in a C130 (e.g., Pratt & Whitney vs. GE), or the differences between a C5 and a C130, both of which may be categorized as a type of “FixedWingAircraft”. Inheritance, rather than prototypes, will be employed when significant structural or behavioral differences are apparent between closely related siblings.

6.3.3 Mixing Inheritance and Prototyping

In the approach selected for use in the LDM we see a mixture of both inheritance and prototyping. Looking at Figure 28 we see a representation of what a typical class hierarchy for fixed-wing aircraft would look like using this mixed approach. At the abstract FWAircraft class, we still have 10,000s of distinct object types. However, at the next level, instead of millions of distinct object types we have millions of prototype instances. Instead of creating a class for every new type of fixed-wing aircraft that is identified, we define a prototype instance.

[image: image28.wmf]C

-

1

3

0

S

N

:

A

1

2

3

4

P

W

J

2

5

5

S

N

X

Y

Z

1

2

3

1

0

0

N

1

,

0

0

0

,

0

0

0

s

N

1

0

,

0

0

0

s

P

h

y

s

i

c

a

l

A

s

s

e

t

P

l

a

t

f

o

r

m

A

i

r

P

l

a

t

f

o

r

m

E

n

g

i

n

e

A

i

r

P

l

a

t

f

o

r

m

E

n

g

i

n

e

R

W

A

i

r

P

l

a

t

f

o

r

m

F

W

A

i

r

P

l

a

t

f

o

r

m

R

W

E

n

g

i

n

e

F

W

E

n

g

i

n

e

C

-

5

C

-

1

3

0

P

W

J

2

5

5

G

E

G

7

1

8

0

.

.

1

0

.

.

1

g

e

n

e

r

a

l

i

z

a

t

i

o

n

i

n

s

t

a

n

c

e

o

f

r

e

f

e

r

e

n

c

e

w

/

c

a

r

d

i

n

a

l

i

t

y

I

n

s

t

a

n

c

e

C

l

a

s

s

P

r

o

t

o

t

y

p

e

I

n

s

t

a

n

c

e

n

.

.

.

n

Figure 28: Mixed Inheritance and Prototyping Approach

For an example of how this mixed approach might be implemented, please refer to 6.8 Logical Data Model Details.

6.3.4 ALP Roles and Capabilities

As discussed earlier, roles and capabilities provide additional flexibility that classical inheritance does not provide. Each Asset may support multiple, concurrent capabilities and roles, each of which is a first-class objects, each with their own structure and behavior. Since not all potential uses (capabilities) and relationships (roles) can be predetermined, both capabilities and roles may be dynamically attached to Assets. This allows new uses and relationships to be associated with a particular instance of an Asset as they are identified.

ALP capabilities and roles are used to separate the uses of and relationships among Assets from the intrinsic structure and behavior of the Assets themselves. Asset definitions embody only the key or core information and behavior necessary to distinguish one Asset type from another. Additional information regarding the specific usage of an Asset, or relationship of one Asset to another, will be contained and described in capabilities and roles. Below are some examples of how roles and capabilities may be used to further reduce the overall size of the LDM class hierarchies by reducing the number of distinct object types.

Using the familiar subject of the parent-child relationship (see Figure 29), a person (Asset) may assume the role of parent or child in one or more parent-child relationships with other people (Assets). The person may of course occupy both of these two roles concurrently in different relationships. Associated with each role the person has (parent and child) is a set of capabilities. The set of capabilities is potentially quite different for each role, and of course may vary over time due to changes in age, education level, experience, etc. In addition, each role and capability has its own set of associated attributes (structure) and behavior.

[image: image29.wmf]P

a

r

e

n

t

R

o

l

e

B

a

s

e

b

a

l

l

P

l

a

y

e

r

M

a

j

C

.

J

o

n

e

s

C

h

a

r

l

i

e

J

o

n

e

s

J

r

.

1

0

4

0

F

i

l

e

r

D

i

s

c

i

p

l

i

n

a

r

i

a

n

L

i

t

t

l

e

L

e

a

g

u

e

P

l

a

y

e

r

C

h

i

l

d

R

o

l

e

A

s

s

e

t

P

h

y

s

i

c

a

l

A

s

s

e

t

P

e

r

s

o

n

P

e

r

s

o

n

R

o

l

e

R

o

l

e

0

.

.

N

0

.

.

N

1

.

.

N

1

.

.

N

1

.

.

N

1

.

.

N

C

a

p

a

b

i

l

i

t

y

P

e

r

s

o

n

C

a

p

a

b

i

l

i

t

y

0

.

.

1

0

.

.

1

0

.

.

1

0

.

.

1

0

.

.

1

g

e

n

e

r

a

l

i

z

a

t

i

o

n

i

n

s

t

a

n

c

e

o

f

r

e

f

e

r

e

n

c

e

w

/

c

a

r

d

i

n

a

l

i

t

y

I

n

s

t

a

n

c

e

C

l

a

s

s

P

r

o

t

o

t

y

p

e

I

n

s

t

a

n

c

e

n

.

.

.

n

Figure 29: Roles and Capabilities

In the ALP LDM, each Asset is capable of supporting multiple, concurrent capabilities and roles, both of which are first-class objects, each with their own structure and behavior. Since not all potential uses (capabilities) and relationships (roles) among the 4,000,000+ Assets can be predetermined, both capabilities and roles may be dynamically attached to Assets. This allows new uses and relationships to be associated with a particular instance of an Asset as they are identified. This ability to dynamically attach capabilities and roles to Asset instances at runtime provides maximum flexibility in object definition and usage. In addition, this dynamism provides object mutability without requiring massive recompile cycles that not only perturb existing applications, but are impractical given the longevity of many of the Assets encompassed in the model.

6.3.5 Capabilities via Classical Inheritance

Referring to Figure 30below, in classical inheritance we see that C130Pilot has been defined as a subtype of Pilot, which is a subtype of Person. Major Jones has been defined as a C130Pilot who belongs to the 116th C130 Squadron. This is fine if all we ever want Major Jones to do is fly C130s. If we want Major Jones to do something other than be a C130Pilot, for example to fly C147s in addition to C130s, then we have a serious problem. Using only a classical inheritance approach, for Major Jones to be both a C130Pilot and a C147Pilot we must create two separate object instances – a C130Pilot instance and a C147Pilot instance. However, by creating two different instances for Major Jones we end up with duplicate data such as Major Jones name, address, etc. In addition, if we follow good object-oriented design methods, Major Jones’ C130Pilot instance knows nothing about his C147Pilot instance and vice versa. As a result, we have no way of knowing when changes in attribute data in one instance can or should effect attribute data in the other.

[image: image30.wmf]M

a

j

J

o

n

e

s

C

-

1

3

0

S

Q

1

1

6

t

h

C

-

1

3

0

S

N

:

A

1

2

3

4

A

s

s

e

t

P

h

y

s

i

c

a

l

A

s

s

e

t

O

r

g

A

s

s

e

t

P

e

r

s

o

n

A

i

r

P

l

a

t

f

o

r

m

A

i

r

F

o

r

c

e

S

Q

C

-

1

3

0

S

Q

C

-

1

3

0

C

-

1

3

0

P

i

l

o

t

F

W

A

i

r

P

l

a

t

f

o

r

m

P

i

l

o

t

0

.

.

1

0

.

.

1

0

.

.

1

0

.

.

1

g

e

n

e

r

a

l

i

z

a

t

i

o

n

i

n

s

t

a

n

c

e

o

f

r

e

f

e

r

e

n

c

e

w

/

c

a

r

d

i

n

a

l

i

t

y

I

n

s

t

a

n

c

e

C

l

a

s

s

P

r

o

t

o

t

y

p

e

I

n

s

t

a

n

c

e

n

.

.

.

n

Figure 30: Capabilities via Classical Inheritance
6.3.6 Capabilities via Prototyping

Capabilities via prototyping provide additional modeling power by enabling the dynamic addition and removal of specific object uses at runtime. As shown in Figure 31 below, Major Jones is now defined as an instance of Person. In addition, we have defined several different prototype capabilities that are suitable for an object of type Person (PersonCapability). As Major Jones obtains or looses different flight qualifications, they are attached or removed from his list of capabilities. When Major Jones is assigned to a particular squadron or aircraft all we have to do during allocation is verify that he has the necessary capability (i.e., certification) to perform the required Role. If we want Major Jones to fly both C130s and C147s we no longer have to decide whether he is either a C130Pilot or a C147Pilot – he is both.

[image: image31.wmf]C-5

Qualified

Pilot

Capability

Maj

Jones

C-130 SQ

116th

C-130

C-130

SN: A1234

C-147

Qualified

C-130

Qualified

C-17

Qualified

Transport

12

STons

Asset

Physical

Asset

Org

Asset

Person

AirPlatform

FW

AirPlatform

AirForce

SQ

Capability

Asset

Capability

Person

Capability

0

..1

0

..1

0

..1

0

..1

C-130

SQ

generalization

instance of

reference w/ cardinality

Instance

Class

Prototype

Instance

n...n

Figure 31: Capabilities via Prototyping

6.3.7 Roles via Inheritance

In Figure 32 we see how different helicopter roles have been modeled using a classical inheritance approach. Each role has been defined as a distinct subtype of RotaryWingAircraft – seventeen subclasses in all. Once again this is fine if we only want to use a helicopter in a single capacity, but what if we wish that helicopter to be able to perform different functions at different times?

[image: image32.wmf]C

a

r

g

o

H

e

l

o

U

t

i

l

i

t

y

H

e

l

o

E

C

M

H

e

l

o

O

b

s

e

r

v

a

t

i

o

n

H

e

l

o

.

.

.

C

H

-

4

7

D

U

H

-

6

0

L

O

H

-

6

A

O

H

-

5

8

A

R

o

t

a

r

y

W

i

n

g

A

i

r

c

r

a

f

t

E

H

-

6

0

A

g

e

n

e

r

a

l

i

z

a

t

i

o

n

i

n

s

t

a

n

c

e

o

f

r

e

f

e

r

e

n

c

e

w

/

c

a

r

d

i

n

a

l

i

t

y

I

n

s

t

a

n

c

e

C

l

a

s

s

P

r

o

t

o

t

y

p

e

I

n

s

t

a

n

c

e

n

.

.

.

n

Figure 32: Roles via Inheritance

6.3.8 Roles via Prototyping

In Figure 33 we see how the same helicopter roles have been modeled using a prototyping approach. Each role has been defined as a prototype of RotaryWingAircraft – seventeen prototypes in all. In this approach each helicopter has a distinct set of valid roles that allows the helicopter to perform different functions at different times.

[image: image33.wmf].

.

.

R

o

t

a

r

y

W

i

n

g

A

i

r

c

r

a

f

t

C

a

r

g

o

H

e

l

o

U

t

i

l

i

t

y

H

e

l

o

E

C

M

H

e

l

o

O

b

s

e

r

v

a

t

i

o

n

H

e

l

o

C

H

-

4

7

D

U

H

-

6

0

L

O

H

-

6

A

O

H

-

5

8

A

E

H

-

6

0

A

g

e

n

e

r

a

l

i

z

a

t

i

o

n

i

n

s

t

a

n

c

e

o

f

r

e

f

e

r

e

n

c

e

w

/

c

a

r

d

i

n

a

l

i

t

y

I

n

s

t

a

n

c

e

C

l

a

s

s

P

r

o

t

o

t

y

p

e

I

n

s

t

a

n

c

e

n

.

.

.

n

Figure 33: Roles via Prototyping

In summary, prototyping, capabilities and roles together provide not only for creation of new Asset types, but modification of existing Asset instance structure and behavior at runtime without resorting to wholesale inheritance lattice changes. Combining this power with classical inheritance provides the necessary stability to provide a continuously evolving and extensible model for the ALP system.

6.4 LDM Structure

The LDM structure that has evolved to date incorporates the concepts above that have been introduced in the preliminary sections on the LDM.

The LDM is based on the following design principles that primarily follow from the introduction in prior sections:

1. Things are primarily modeled based on their Properties rather than what they Are

2. Whether a Tank logically is-a Vehicle or is-a Weapon, is not relevant as long as it has the Properties of Vehicle and the Properties of a Weapon

3. Related Properties are collected in Property Groups e.g. there are Vehicle Property Groups and Weapon Property Groups

4. Instances of Actual things derive their Properties from Prototype Instances

· This greatly reduces the number of classes required to represent the Logistics Domain

· This allows new types of things to be defined and created dynamically

5. The Class of a Prototype determines the Property Groups that must be present in each Prototype Instance
· This provides regularity in the normal properties of related things

· For example, all Trucks have the CargoCarryingProperty

6. A Prototype Instance may include additional Property Groups
· This provides flexibility in extending the properties of special types of things

· For example, a truck with a gun mounted on it can have the WeaponProperty

7. An Actual Instance may refer to specialized Property Groups that differ from the Prototype
· This provides flexibility in specializing the properties of particular instances of actual things.

· For example, a truck may have degraded speed capability.

8. Create general structure that can incrementally grow as coverage requirements evolve

9. Limit detailed coverage to requirements for 1998 demonstration

The hierarchies are summarized in Figure 34and Figure 35.

AssetGroup - useful collective structures such as cargo load, convoy, train

Facility - transportation link, network, node, route

Organization - military and other organizations

Person - military and civilian

Physical Asset- the ten classes of supply: Class I .. Class X with subordinate structures

Aggregate Asset - intended for cases where knowledge of counts, not instances, relevant
Figure 34: Top Level Asset Hierarchy

Military person capabilities (Army: Grade/MOS/Skills Air Force: AirCrew Capabilities)

Organizational capabilities

Transportation Capabilities

Supply Capabilities

Maintenance Capabilities

Support Capabilities

Properties

ammunition properties

cargo capabilities

location property

environmental conditions that apply to anything with the location property

properties for facility, transportation link, transportation node

food property

fuel property

organizational properties

physical asset properties

repair part properties

self propulsion properties

vehicle properties

weapon properties

person properties

Figure 35: Property/Capability Hierarchy

Asset Creation is accomplished via reference to the LdmFactory. The interface might be used as follows to create an instance of an M1A1 tank:

TheCommandersTank =

 (SelfPropelledGroundWeapon)createLdmObject

(“M1A1 Tank”, “vin/123456”) ;

6.5 Putting It All Together

As stated in the Introduction for this section, the LDM consists of not only the classes necessary to obtain instances of domain-specific objects, but also the classes necessary to communicate within and without ALP Clusters, and “private” LDM objects defined and used by a single type of PlugIn. Both Domain and UI PlugIns require an intimate knowledge of both of domain-specific and ALP-specific classes to perform their functions – they maintain a foot in both camps.

The domain-specific objects are comprehended in the Asset and Capability hierarchies. These hierarchies are essentially complete in structure, but evolution of their attributes and associated methods is expected.

ALP-specific objects are embodied in the Message and Exception hierarchies. The Message hierarchy includes both Directives and DataMessages. Like the domain-specific object hierarchies, the ALP-specific object hierarchies are expected to continue to evolve. Details of the various domain-specific and ALP-specific APIs can be found in the Appendices at the end of this document.

6.6 Model Evolution

As discussed earlier in this section, the selected design approach for the LDM employs a mixture of several techniques: classical hierarchical decomposition (i.e., inheritance), prototyping, and the use of ALP Capabilities and Roles. For the experienced object-oriented developer, classes in a well-designed inheritance graph are relatively easy to use. Unfortunately, changes in a deep inheritance structure, however, can incur a large compile-time impact and perturb existing software. As for prototyping, while it may be easy to change and has little to no compile-time impact, there will be increased overhead to the developer, but this may be somewhat alleviated by the use of object factories to hide complexity.

As you can see there is no clear-cut answer about when to use inheritance vs. prototyping. The challenge for all developers will be to decide when to employ a particular technique, and that attributes and behavior should be captured in a Role versus a Capability versus an Asset. The following guidelines should be used in selection of an Asset, Capability, or Role:

· An Asset should be used to capture the essential attributes and behavior of the particular person, place, or thing being modeled. For a person, this might include title, name, sex, nationality, and parents.

· A Capability should be used to capture Asset abilities, qualifications, or the level of service an Asset provides. Some examples are C-130 Qualified, C-147 Qualified, HET Qualified, and DutyCycle.

· A Role should be used to provide a context for a set of one or more Asset Capabilities (i.e., a frame of usage). Essentially, Roles specify what an Asset can be used for, or how an Asset can be used. Some examples of a Role are Pilot, Driver, and Commander.

Questions regarding Asset, Capability, and Role usage, or employment of inheritance vs. prototyping techniques should be directed to members of the ALPINE LDM team.

6.7 Summary

The ALP Logical Data Model seeks to provide a structure in which developers can work to capture a broad, wide-ranging, and constantly changing set of object attributes and behavior, much of which is handled by the wise application of reuse via inheritance. Inheritance provides a consistent and stable foundation upon which all can design and build their software. In areas where the number of permutations and combinations of data are intractable, as well as in areas where attributes and behavior continuously change based upon application and usage, delegation via prototyping is employed. This hybrid approach provides both a consistent and stable foundation, as well as a way to effectively manage change.

6.8 Logical Data Model Details

This section begins to describe the application of the ALP approach to domain modeling. Section 6.8.1 discusses the implementation approach, which makes use of Classes and Prototypes to represent Assets and their Capabilities. Section 6.8.2 describes the use of classes and prototypes to represent assets and capabilities. Section 6.8.3 describes the use of classes and prototypes to define composite objects. Section 6.8.4 illustrates the use of prototypes for representing ships and aircraft. Section 6.8.5 illustrates the use of prototypes for representing ground vehicles and tractors.

6.8.1 Implementation Approach

Our approach to implement the representation of domain objects is to build a traditional class hierarchy, but limited in depth, which is shallower than usual. Traditionally, a specific physical object would be represented as an instance of a particular class. In the ALP prototype approach, both a specific physical object and a prototype instance of that type of object would be represented as instances of the same more generic class. Much of the behavior of the physical object instance derives from the prototype instance. This includes all default attributes of the physical object that are shared with other instances of that type of object (generally physical characteristics and capabilities). This greatly diminishes the number of classes needed to build the Logical Data Model; it allows different instantiations of the Logical Data Model to include and exclude large portions of the LDM; and it allows great flexibility in modifying the types of physical objects that are represented in the LDM without recompiling any portion of the LDM class hierarchy.

If any attribute of the physical object (e.g. serial number, maintenance history, special physical characteristic or capability) differs from the prototype instance, then just those differences are represented in the implementation of the physical object.

6.8.2 Use of Classes and Prototypes to Represent Assets and Capabilities

[image: image34.wmf]Model=

AirVehicleProp

=

ContainProp

=

OtherProp

CargoFixed

WingAircraft

maxWtSTON

=

maxVolMTON

=

CruiseSpeedKts

=

MinRunwayLength

=

fuelType

=

AirVehicleProperty

ContainProperty

Asset Prototypes and

Property Prototypes

Model=C-130

C-130AirVehicleProp

C-130ContainProp

()

C-130

CruiseSpeedKts

=450

MinRunwayLength

=4500

FuelType

=“JP4”

C-130

AirVehicleProp

MaxWtSTON

= 14.0

MaxVolMTON

= 7.0

C-130ContainProp

TailNumber

=“C789”

()

C-130-TNC789

LDM Classes

Asset

Instances

Figure 36: Implementation Approach Applied to C-130 Aircraft

Traditionally, a specific physical aircraft (C-130 SN: 1234) would be represented as an instance of a class (C-130) of fixed wing aircraft. In the ALP prototype approach (shown in Figure 36), both the specific physical aircraft (C-130 SN: 1234) and a prototype instance (C-130) are represented as instances of the same FixedWingAircraft class. Much of the behavior of the C-130-SN-1234 instance derives from the prototype instance (C-130). This includes all default attributes of C-130 aircraft (generally physical characteristics and capabilities).

Suppose that a C-130 SN: 1234 had been fitted with reinforced cargo bay flooring to support especially heavy cargo, then its instance will have its serial number (1234), its maintenance history, and the added cargo capability because of the reinforced flooring, as well as the resulting reduced range and increased fuel consumption rate.

6.8.3 Use of Classes and Prototypes to Define Composite Objects

[image: image35.wmf]FW

Engine

GE-G718

PW-J255

PW-Eng-SN XYZ123

FWAircraft

Mass GVW ;

.

FWAircraft Prototype ;

.

public boolean IsPrototype() ;

public HasPrototype() ;

C

1

range

C

n

C-130-SN1234

.

.

FWAircraft proto ;

FWEngine propulsion ;

<Alist> capabilities ;

C-130

.

FWEngine propulsion ;

<Alist> capabilities

.

C

1

C

n

range

payload

Weather-Conditions

Integer WindVelocity ;

Integer WindHeading ;

Figure 37: Defining Composite Objects with Classes and Prototypes

Figure 37 illustrates the construction of composite objects. The physical object instance (C-130 SN1234) derives much of its behavior from its prototype (C-130), and its actual class: FWAircraft. However, the prototype only denotes that its default or typical engine is a Pratt & Whitney Model J255. The (C-130 SN1234) physical object has its own object reference to the specific physical engine (PW-J255-SN-YZ123). Further, if that engine is replaced with either another PW-J255 or a different engine (e.g. GE-G718), then only that object reference needs to be updated.

6.8.4 Ship and Aircraft Representative Prototypes

[image: image36.wmf]Legend

Asset

Vehicle

Aircraft: 15

Ship

FW

Aircraft:

1510

RW

Aircraft:

1520

AH-1S

AH64A

CH-47D

EH60A

OH-58A

OH-58C

OH-6A

UH-1H

AH-60A

UH-60L

C-130

C-141

C-5

C-17

B-747

B-767

B-757

MD-11

L-1011

KC-135

KC-10

Some Rotary Wing Prototype

Instances

Model

Model-Name

LIN

NSN

AH-1S

(COBRA)

K29694

1520005049112

AH-64A

(APACHE)

H28647

1520011069519

CH-47D

(CHINOOK)

H30517

1520010883669

EH-60A

(QUICK FIX)

H30616

1520010820686

OH-58A

(KIOWA)

K31042

1520001697137

OH-58C

(KIOWA)

H31110

1520010204216

OH-6A

(CAYUSE)

K30645

1520009181523

UH-1H

(HUEY)

K31795

1520000877637

UH-60A

(BLACKHAWK)

K32293

1520010350266

UH-60L

(BLACKHAWK)

H32361

1520012984532

Breakbulk

Container

LASH

SEABEE

Breakbulk

/Container

RORO

RORO/

Breakbulk

Heavy Lift/RORO

RORO/Combination

LOLO

Special

Glider

:1540

Drone

:1550

FSC

Count

1510

70

1520

41

1540

0

1550

15

Class

Prototype

Instance

Subclass

Instance

Figure 38: Ship and Aircraft Class Hierarchy and Representative Prototype Instances

Figure 38 shows the initial version of the class hierarchy and prototype instances for ship and aircraft. The aircraft class and its subclasses are based on the Federal Supply Class (FSC) designations. In general, we will employ published, domain-specific classes and subclasses when they are available and appropriate.

The prototype ship instances are derived from “The Cargo Capability of Ships” published in 1987 by MTMC-TEA. The prototype Fixed Wing aircraft (FSC: 1510) instances are a subset of those typically in use by TRANSCOM plus certain CRAF specific aircraft.

The prototype Rotary Wing aircraft (FSC: 1520) instances are a subset of those listed in the Army Master Data File (AMDF). A count of all the Aircraft listed in the AMDF by subclass is also shown in Figure 39. Note the absence of Gliders in the AMDF.

6.8.5 Ground Vehicles and Tractors Representative Prototypes

[image: image37.wmf]LowSpeedFullTracked

Tractor:2410

WheeledTractor:2420

HighSpeedFullTracked

Tractor:2430

Tractor:24

GroundEffectVehicle:2305

PassengerMotorVehicle:2310

WheeledTruckAnd

TruckTractor:2320

MotorcycleAndBicycle:2340

TrackedCombatAssaultAnd

TacticalVehicle:2350

GroundVehicle:23

Trailer:2330

Vehicle

FSC

COUNT

2305 397

2310 109

2320 1143

2330 848

2340 26

2350 158

2410 99

2420 81

2430 3

M548A1

M551A1

M577A2

M578

M60A3

M728

M88A1

M901A1

M973

Some Tracked Combat Assault and

Tactical Vehicle Prototype Instances

Model

ModelName

LIN

 NSN

M1059

(SMOKE GEN)

C12815

2350012030188

M106A2

D10741

2350010696931

M110A2

(HOWITZER)

K56981

2350010414590

M113A3

(APC)

C18234

2350012197577

M163A1

(VULCAN)

J96694

2350009994392

M1A1

(ABRAMS)

T13168

2350010871095

M1IP

(ABRAMS)

T13374

2350011368738

M2A1

(BFV)

F40307

2350011791027

M2A2

(BFV HS)

F40375

2350012487619

M548A1

D11049

2350010969356

M551A1

(SHERIDAN)

A93125

2350001405151

M577A2

D11538

2350010684089

M578

(LRV)

R50544

2350004396242

M60A3

(TTS)

T13169

2350010612306

M728

(CEV)

E56578

2350007951797

M88A1

R5068

 2350001226826

M901A1

(ITV)

E56896

2350011035641

M973

(SUSV)

C11280

2350012816451

M981

(FIST-V)

C12155

2350010853792

M992A1

(FAASV)

C10908

2350013523021

M1059

M106A2

M110A2

M113A3

M163A1

M1A1

M1IP

M2A1

M2A2

M981

M922A1

Legend

Class

Prototype

Instance

Subclass

Instance

Figure 39: Ground Vehicle and Tractor Class Hierarchy and elected Prototype Instances

Figure 39 shows the initial version of the class hierarchy and prototype instances for ground vehicle and tractor. The GroundVehicle class, the Tractor class, and their subclasses are based on the Federal Supply Class (FSC) designations.

The prototype TrackedCombatAssaultAndTacticalVehicle (FSC: 2350) instances are a subset of those those listed in the Army Master Data File (AMDF). A count of all the Ground Vehicles and Tractors listed in the AMDF by subclass is also shown in Figure 39. Note the large number of WheeledTruckandTruckTractors in the AMDF.

7. References

ALP Detailed Design Document
The ALP Detailed Design Document published by ALPINE on March 28, 1997 provides additional detail on the overall ALP system design and includes use cases that illustrate how logistics operations can employ the ALP system. It is available at:

http://www.alpine.bbn.com/alpine/alp_sw/design_doc/ALP-Design4-970408_970410

Java Style Guide

Draft Java Coding Standard, Doug Lea,

http://g.oswego.edu/dl/html/javaCodingStd.html

Java Beans

Presenting JavaBeans, Michael Morrison, Sams.Net Publishing, 1997, ISBN 1-57521-287-0.

JavaBeans web site, including BDK's: http://java.sun.com/beans/

Object Database Management Group’s OODBMS API

The Object Database Standard: ODMG 2.0, R.G.G. Cattell, Douglas Barry, Dirk Bartels, Mark Berler, Jeff Eastman, Sophie Gamerman, David Jordan, Adam Springer, Henry Strickland, and Drew Wade, published as part of The Morgan Kaufmann Series in Data Management Systems, Jim Gray, Series Editor, 1997, ISBN 1-55860-463-4.

Contains the definition and detailed description of the programming interface to object databases, including the Java and C++ language bindings.

Interactive Object Databases: The ODMG Approach, Richard Cooper, published by International Thomson Computer, ISBN 1-85032-294-5.

Provides a tutorial teaching use of the ODMG API. The included CD-ROM contains the software needed to run the book’s examples.

Object-Oriented Design

[L86] Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems. OOPSLA ’86 Proceedings. ACM Press, September 1986.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

Grady Booch. Object Oriented Design with Applications. The Benjamin/Cummings Publishing Company, Inc., 1991.

James Rumbaugh, et al. Object-Oriented Modeling and Design. Prentice Hall, 1991.

I. Jacobsen et al. Object-Oriented Software Engineering. ACM Press, 1992.

S. Shlaer and S. Mellor. Object Life Cycles: Modeling the World in States. Prentice Hall, 1992.

Robert Orfali, Dan Harkey, and Jeri Edwards. The Essential Distributed Objects Survival Guide. John Wiley & Sons, Inc., 1996.

Desmond D’ Souza and Alan Wills. "Catalysis - Practical Rigor and Refinement Extending OMT, Fusion, and Objectory". ICON Computing, Inc., 1996. http://www.iconcomp.com/papers/catalysis/catalysis.frm.html

Erich Gamma, et al. “Design Patterns, Elements of Reusable Object-Oriented Software”, Addison Wesley, 1995.

[L 86] Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems. OOPSLA ’86 Proceedings. ACM Press, September 1986.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

Grady Booch. Object Oriented Design with Applications. The Benjamin/Cummings Publishing Company, Inc., 1991.

James Rumbaugh, et al. Object-Oriented Modeling and Design. Prentice Hall, 1991.

I. Jacobsen et al. Object-Oriented Software Engineering. ACM Press, 1992.

S. Shlaer and S. Mellor. Object Life Cycles: Modeling the World in States. Prentice Hall, 1992.

Robert Orfali, Dan Harkey, and Jeri Edwards. The Essential Distributed Objects Survival Guide. John Wiley & Sons, Inc., 1996.

Desmond D’ Souza and Alan Wills. "Catalysis - Practical Rigor and Refinement Extending OMT, Fusion, and Objectory." ICON Computing, Inc., 1996. http://www.iconcomp.com/papers/catalysis/catalysis.frm.html

Version 5.2
ALP PlugIn Developers’ Guide
ALP PlugIn Developers’ Guide
Version 5.1

_988527539.doc

Superior

Subordinate

3: GetLogSupport

2: AssetAssigment

1: ReportForDuty

_989912612.doc

n

1

1

1

n

1

Task Relations

Task

(Parent Task)

1

has a reference to,

e.g. Task has a reference to

 Preferences

Legend:

Asset

(

DirectObject

)

Prepositional-

Phrase

Verb

Preferences

Plan

Workflow

Task

1

_994148979.doc

Cluster A

Cluster C

Cluster B

Cluster D

1: Task

2: SupportRequest

5: AllocationResult

6: AssetAssignment

4: ReportForDuty

3: Allocation Process

7: Task

_994149331.doc

PlugInAdapter

ThinPlugIn

SimplifiedPlugIn

EssentialPlugIn

MB3.0 PlugIn classes still supported

MB5.x PlugIn classes (recommended)

SingleThreadedPlugIn

_990342866.doc

Component

PlugIn

Wrapper

MyPlugIn

Subscriber

Inbox

Outbox

Distributor

LogPlan

Subscriber

Distributor

distributes

Envelopes to all subscribers

who have registered a

subscription. Distributor also

consults

LogPlan

 subscribers

to “feed” new

PlugIns

with

existing data that matches a

Subscription Predicate.

C

o

n

t

a

i

n

e

r

s

Containers

are JGL objects

which contain

objects which are

subscribed to by

the

PlugIn

Cluster

Messaging

Component

PlugIn

Wrapper

MyPlugIn

C

o

n

t

a

i

n

e

r

s

C

O

N

T

_988530759.doc
[image: image1.wmf]1

[image: image2.wmf]1

Workflow

n

1

1

Task

Plan

Asset

extends, e.g. Allocation is a

PlanElement

has a reference to,

e.g. Plan has references to n

 PlanElements

Legend:

Expansion

PlanElement

Allocation

Aggregation

AssetTransfer

Composition

Allocation Result

�

1

�

2

_988627812.doc

Directive

Message

Notification

Policy

Directive

Task-

Rescind

Asset-

Assignment

Task

MPTask

Asset-

Rescind

“Has a”

“Is a”

_988556066.doc
[image: image1.wmf]Score

�

threshold

quantity @ time

Aspect:

_988527603.doc

Cluster A (2)

Cluster C

Cluster B

1

4

6

5

3

_985166692.ppt

Aggregating

PlanServer

(TPFDD)

Cluster

PlanServer

Cluster

PlanServer

Cluster

PlanServer

Cluster

PlanServer

Cluster

Log Plan

Server

Views

Debugging UI

Other web based browsing

LEIF

Info Buses

TPFDD

Display

TPFDD

Display

TPFDD

Display

TPFDD

Display

TPFDD

Display

TPFDD

Display

Policy

Producer

Organization

Producer

Inventory

Producer

TimeSlider

Producer

Rainbow

Producer

TPFDD

Producer

_988203992.doc

aspectScorePoints

highThreshold

IndependentVariableID

e.g.

START_TIME

Score

_988204476.doc

Workflow

Task T1

Task T1.1

Task T1.2

Task T1.3

Task T1.4

Plan

Element

Expansion

1

1

1

References of a Plan

Element

In the case of

PlanElement

 is

an Expansion

Asset

AllocationResult

1

1

Task T1

Plan

Element

Allocation

In the case of

PlanElement

 is

an Allocation

1

extends, e.g. Allocation is a

PlanElement

has a reference to,

e.g. Allocation has a reference to a Task

Legend:

_988204155.doc

Workflow

Task

Constraint

m

n

2

k

Legend:

has a reference to,

e.g. Workflow has references to n Tasks

Preferences

1

_985166777.ppt

User Interface

Cluster

PlanServer

PlanServiceProviders

PlanServiceProviders

PlanServiceProviders

PlanServiceProviders

PlanServiceProviders

PlanServiceProviders

PlanServerPlugIn

_980849987.doc

Allocator

Supply

PlugIn

Maintenance

PlugIn

Assessor

Supply

PlugIn

Maintenance

PlugIn

Transportation

PlugIn

Support

Unit

Cluster

Data

JTAV

TC AIMS II

GTN

User Interface

Supply

PlugIn

Maintenance

PlugIn

Transportation

PlugIn

Supply

PlugIn

Maintenance

PlugIn

Expander

Transportation

PlugIn

Transportation

PlugIn

_980850377.doc

Model=

AirVehicleProp

=

ContainProp

=

OtherProp

CargoFixed

WingAircraft

maxWtSTON

=

maxVolMTON

=

CruiseSpeedKts

=

MinRunwayLength

=

fuelType

=

AirVehicleProperty

ContainProperty

Asset Prototypes and

Property Prototypes

Model=C-130

C-130AirVehicleProp

C-130ContainProp

()

C-130

CruiseSpeedKts

=450

MinRunwayLength

=4500

FuelType

=“JP4”

C-130

AirVehicleProp

MaxWtSTON

= 14.0

MaxVolMTON

= 7.0

C-130ContainProp

TailNumber

=“C789”

()

C-130-TNC789

LDM Classes

Asset

Instances

_983010908.doc

Request

Request

Data

Data

PlugIn

LogPlan

 Assets

Attributes

LDM

PlugIn

Contemporary

Data

Source

_980850460.doc

Legend

Asset

Vehicle

Aircraft: 15

Ship

FW

Aircraft:

1510

RW

Aircraft:

1520

AH-1S

AH64A

CH-47D

EH60A

OH-58A

OH-58C

OH-6A

UH-1H

AH-60A

UH-60L

C-130

C-141

C-5

C-17

B-747

B-767

B-757

MD-11

L-1011

KC-135

KC-10

Some Rotary Wing Prototype Instances

Model

Model-Name

LIN

NSN

AH-1S

(COBRA)

K29694

1520005049112

AH-64A

(APACHE)

H28647

1520011069519

CH-47D

(CHINOOK)

H30517

1520010883669

EH-60A

(QUICK FIX)

H30616

1520010820686

OH-58A

(KIOWA)

K31042

1520001697137

OH-58C

(KIOWA)

H31110

1520010204216

OH-6A

(CAYUSE)

K30645

1520009181523

UH-1H

(HUEY)

K31795

1520000877637

UH-60A

(BLACKHAWK)

K32293

1520010350266

UH-60L

(BLACKHAWK)

H32361

1520012984532

Breakbulk

Container

LASH

SEABEE

Breakbulk

/Container

RORO

RORO/

Breakbulk

Heavy Lift/RORO

RORO/Combination

LOLO

Special

Glider:1540

Drone:1550

FSC

Count

1510

70

1520

41

1540

0

1550

15

Class

Prototype

Instance

Subclass

Instance

_980850330.doc
[image: image1.bmp]

C-5

Qualified

Pilot

Capability

Maj

Jones

C-130 SQ

116th

C-130

C-130

SN: A1234

C-147

Qualified

C-130

Qualified

C-17

Qualified

Transport

12

 STons

Asset

Physical

Asset

Org

Asset

Person

AirPlatform

FW

AirPlatform

AirForce

SQ

Capability

Asset

Capability

Person

Capability

0..1

0..1

0..1

0..1

C-130

SQ

generalization

instance of

reference w/ cardinality

Instance

Class

Prototype

Instance

n...n

_980676383.doc

3

Time

Cluster

Boundary

Cluster

Boundary

Expander

PlugIn

Allocator

PlugIn

LogPlan

1

8

2

4

5 December 1998

6

7

Assessor

PlugIn

9

_957162653.doc

Loaded

Active

Unloaded

load

suspend

unload

start

resume

Idle

stop

halt

initialize

