
ALP Architecture Design Document

Advanced Logistics Program

(ALP)

Architecture Design Document

Version 5.2

July 29, 1999

ALPINE

11.
ALP Architecture Basics

1.1.
Foundation
1
1.1.1.
General Business Problem
1
1.1.2.
Cognitive Models
2
1.2.
Architecture and Implementation Overview
3
1.2.1.
Societies and Communities of Agents
3
1.2.2.
Clusters
4
1.2.3.
PlugIns
6
2.
ALP Architecture Design Topics
8
2.1.
Primary Object Model and Data Flow
8
2.1.1.
Primary Objects
8
2.1.2.
Data Flow Management
13
2.2.
Node
15
2.2.1.
Java Virtual Machine
15
2.2.2.
ClusterRegistry
15
2.2.3.
Cluster Management
15
2.2.4.
Metrics
16
2.3.
Cluster
16
2.3.1.
Cluster Object Factory
16
2.3.2.
Cluster Messaging
16
2.3.3.
Cluster Infrastructure
17
2.3.4.
Logic Providers
19
2.3.5.
LogPlan
21
2.3.6.
Plan API
21
2.4.
Logical Data Model (LDM)
25
2.4.1.
Assets
26
2.4.2.
Workflow
26
2.4.3.
Directives
27
2.4.4.
PlanElement
28
2.4.5.
Role Schedule
30
2.5.
ALP’s Physical Layout
30
Appendix A - Glossary
1

1. ALP Architecture Basics

1.1. Foundation

1.1.1. General Business Problem

The Advanced Logistics Program (ALP) is designed to deal with widely dispersed enterprise operations that require planning and coordination on a large scale to meet the enterprise missions or goals. The next section (1.2) discusses the ALP solution, but first it is valuable to characterize the applicable business problems driving the ALP design.

Large businesses regularly face serious problems when a non-routine change or crisis situation requires that multiple business units with disparate information systems must collaborate, plan, and execute as a synchronous enterprise. Usually, when the crisis or non-routine change occurs, a number of actions begin to occur across the enterprise:

· Contingency plans are dusted off and examined to determine applicability to the current situation

· A great deal of socialization begins among the chief players through phone calls, email, reports, video-conferencing, and so on to clarify needs and fill in gaps in any contingency plans

· Tasks roll down through the hierarchy to begin to obtain data from the disparate systems and stand up operational, tactical plans

· Information rolls up through the hierarchy with aggregation so that the cost, schedule, impact, and further contingencies can be assessed

· Service orders to support the new activity are placed to providers at many levels in the enterprise, and the service providers report on cost, schedule, and qualifications of responding to the orders

· Parties at all levels negotiate, adjust, re-plan, re-assess, consider alternatives, predict results, and adapt to the information provided by their systems, subordinates, superiors, customers, and providers

Most businesses are not at risk of completely failing when encountering this type of problem. However, the common inability to efficiently respond to the problem introduces, to varying degrees, unnecessary costs, loss of value, unpredictable impact, less than reliable execution, and inability to accurately estimate cost and schedule. The impact of these problems scale to the size and complexity of the business enterprise. For example, a very large oil company reacting to a dramatic shift in oil prices may restructure its supply chain affecting all aspects of the enterprise, world-wide. The more effectively and efficiently the company can react to such changes, the better it can maintain value, reduce risk, and control impact.

In the real world, the people working within these large enterprises wind up spending a great deal of time just acquiring data, validating processes, transporting information, and a great deal of non-intellectual work. The disparate computer systems, built for routine operations, require a great deal of manual, ad hoc work to deal with serious non-routine change. Even where large scale planning systems have been devised, they don’t produce a bottom-up, 100% reality based plan, but are scenario driven based on aggregated or historical data, such as from data warehouses.

Solutions to this problem have been attempted many times in the past. The results have been less than fruitful for a number of reasons:

· Attempts to specify requirements for the entire solution space take so long that by the time requirements are delivered, the need has changed and the requirements are out of date, commonly called analysis paralysis or forever reengineering

· Attempts are made to develop and field some portions of the system, but eventually cost overruns and schedule delays seriously compromise scope and intended effectiveness

· Centralized solutions become larger than systems can handle and are encumbered by extraordinary performance problems which in turn drive business units back into decentralization, and disintegrated ability to work as an enterprise

· Transition and reengineering of legacy systems, merging contemporary systems, and integrating with emerging systems is very difficult to execute for routine usage, much less add enterprise level integration and operations as a requirement

Data warehouses and data marts have been effective in recent years for producing overall, enterprise-level information, aggregated from operational systems, however, they introduce a compromise in timeliness and detail, with no transactional, operational component

An elegant solution would be an enterprise system which:

· Can develop a reliable, executable plan based on information from all current, operational systems across the enterprise,

· Will resolve data differences with transparency to both the enterprise and operational levels,

· Will allow dynamic re-planning based on emerging changes data at any level within the system

· Can react automatically to time, cost, schedule, and quality parameters

· Is able to enhance users’ and decision-makers’ ability to focus on how to solve the problem

· Will not require complete redesign of all specialized, legacy, business unit systems

· Does not require enterprise-wide rework of networks, infrastructure, and applications

In summary, the business problem that the ALP architecture is designed to help solve is large, complex, and expensive. Therefore, the value of an effective solution would be correspondingly significant.

1.1.2. Cognitive Models

ALP is designed to implement a system that allows the people involved in large-scale enterprise problems to be decision-makers rather than data processors. This is done by an architecture that supports information delivery, task allocation, data aggregation, and process assessment services across all the various business units and systems within the enterprise.

ALP supports implementation of a cognitive model of human thinking and interaction. A cognitive model involves emulation of the mental processes of perception, memory, judgement, and reasoning. The architecture is focused on a task and data driven version of cognition.

When a person perceives a task, the first thing they do is break down the meaning of the task based on experience, memory, and judgement. This is called an expansion of a task into subtasks. The next step for this person would be to allocate resources to execute the subtasks. These resources may be within the person’s ability or may result in tasks to other persons or organizations. The person may also aggregate data provided as results from various resources, which often proves to be a difficult or tedious task, but required to reason out the steps necessary to complete the overall task. In the process of expanding tasks and allocating resources, the person is remembering the steps, progress, and information gathered, prioritizing the most important data and forgetting the outdated, unnecessary, or incorrect information. Along the way, the person also will assess the progress, especially any expected results from an allocation of work. Assessment involves time, quality, volume, cost, and a number of other parameters, all driven by reasoning and judgement.

A person, though, for the cognitive model we are interested in, does not work alone but with other persons that are part of an overall organization. Some of the resources to be allocated may be other persons or organizational representatives. For example, one of the subtasks of moving to a new office could be “start electric service” for the new office. In this case the person is establishing a relationship with certain constraints and expectations between the customer and the provider.

1.2. Architecture and Implementation Overview

1.2.1. Societies and Communities of Agents

Keeping with the goals and concepts adopted by its developers, ALP is implemented by combining a variable number of software components in a manner that mirrors the organizational infrastructure of a large business or agency. Each software component, or “cluster”, is the computerized reflection of an organizational unit. Thus, each cluster acts as the “agent” for the organizational unit it represents.

Each cluster interacts with other clusters in order to plan and execute business tasks, just as each organizational unit interacts with many other units to perform business tasks. A defined set of clusters forms a society, a powerful reflection of a comprehensive organizational environment. Within a society, various subsets of clusters form “communities”, i.e., groups of clusters which combine to implement related business tasks.

Although each cluster demonstrates a unique set of attributes and performs a unique set of functions, all clusters are constructed according to a common template. Clusters are created by combining a variable number of “PlugIns”, software units which are implemented to handle a unique variation of a common task and which are “plugged in” to a cluster infrastructure as appropriate. There are many types of PlugIns, including Expanders, Allocators, Assessors, Aggregators, Data PlugIns, and User Interface (UI) PlugIns. The capabilities of each of these types of PlugIns in discussed in subsequent sections of this document.

Thus, ALP’s designers have created a component hierarchy: a hierarchy which moves from the lowest level of abstraction, PlugIns, to the highest level, societies. A system based on the ALP architecture is implemented by the assemblage of a variable number of these components. Because the number and type of components which comprise a society is constantly changing, a society is ever-changing in its structure and functions. Therefore, a society is constantly subject to “societal shifts”: changes in the character of the entire society which emerge as societal components are added and subtracted. It is this ability to demonstrate societal behavior which allows an ALP-based system to function as a powerful reflection of an organizational “society”.

Figure 1-1illustrates the components which are utilized to construct an ALP society:

[image: image1.png]Figure 1-1

1.2.2. Clusters

ALP’s developers view the cluster as the basic building block of an ALP system. As stated above, each ALP cluster is intended to act as the “agent” of a particular organizational unit. A complete picture of cluster behavior emerges upon consideration of both internal functionality (intra-cluster behavior) and external functionality (inter-cluster behavior).

1.2.2.1. Intra-Cluster Behavior

[image: image2.wmf]Allocation results

and Scores

Incoming

Directives

Outgoing

Directives

User

generated

directives

Orders

PlugIn

PlugIn

 Roles

Support

Materiel

Infrastructure

e

...

Assets

Brake Pads

Containers

People

Units

...

Real World

Data

Weather

Intelligence

Geographic

...

Directives

Task

Policy

Notification

Order

...

Phased

Tasks

with

Assigned

Roles

Allocated

Assets

with

'Plan'

Time

LogPlan

 Data

External

Log Data

PlugIn

Allocator

PlugIn

Assessor

PlugIn

Expander/

Aggregator

Dynamic

Updates

!

Alerts

Figure 1-2

Figure 1.2 illustrates the makeup of a typical ALP cluster. Each cluster is comprised of a mixture of “permanent fixtures” and “transients”. Among the permanent fixtures of the cluster are its Logistics Plan (LogPlan) which includes the “Plan” being developed (or part thereof) and its Asset List and Directive List. Cluster “transients” are really PlugIns, software components which provide unique functionality to a cluster and can be configured (at cluster startup) as necessary to fulfill cluster initiatives. PlugIns generally fall into one of six PlugIn categories: Expanders, Allocators, Aggregators, Assessors, Data (or “LDM” – Logical Data Model) PlugIns, and UI (user interface) PlugIns.

1.2.2.2. Inter-Cluster Behavior: Communities and Nodes

As mentioned in the last section, clusters interact with one another in logical groups known as “communities”. Similar to the manner in which clusters act as agents for individual organizational units, a cluster community can be viewed as a software agent for a segment or division of an organization. For example, the United States Army may be represented by an ALP society. One segment of the Army, the 3rd Infantry Division, is represented by a cluster community which incorporates all the individual clusters which together perform the tasks of the division. A cluster community is illustrated in Figure 1-3 below.

[image: image3.png]Figure 1-3

As seen in the above illustration, individual clusters have many associations with other clusters. Each cluster interacts “socially” with other clusters, sending directives, task information, processing feedback, and other messages across cluster boundaries. Many clusters interact heavily with clusters in their own community, but have little or no contact with clusters in other communities. However, ALP’s design does not limit contact between clusters of different communities.

In order to facilitate the efficient management of the entire ALP society, clusters are combined into “nodes”. Whereas the notion of “community” is a logical conception of cluster interaction that is not specifically supported by the ALP architecture, the “node” is a design construct that is an integral part of the current implementations of the ALP architecture. Although an arbitrary concept, the “node” is actually a thin “wrapper” around a Java Virtual Machine (JVM) that includes inter-cluster communications logic. The node creates a run-time environment that will incorporate a variable number of clusters at any given time.

1.2.3. PlugIns

Each cluster within an ALP society incorporates one or more “PlugIns”, the base-level ALP component. The PlugIns are really the “workers” within a society, providing the specific functionality which characterizes the overall operation of a cluster. In many ways, a cluster is merely a “PlugIn shell”, providing a container and a coordinator for a set of PlugIns.

PlugIns are constructed to provide unique functionality when triggered by events that occur within a cluster. These “PlugIn wake-up calls” are actually messages sent to a PlugIn from the Logistics Plan (LogPlan). Upon receipt of a directive that concerns a specific PlugIn, the LogPlan sends that PlugIn a message concerning the directive. The PlugIn then reacts to that message and provides a response message to the Log Plan. Consequently, PlugIns communicate only with the LogPlan, via the Plan API, and do not commmunicate directly with each other. Thus, PlugIns have only limited, and tightly defined, interfaces with the outside world. ALP’s developers have deliberately restricted PlugIn interfaces in order to facilitate easy insertion and removal of individual PlugIns.

Although each PlugIn is unique, many PlugIns can be characterised as belonging to one of several categories based upon the type of functionality provided to a cluster. PlugIn categories include:

· Expanders – This type of PlugIn is notified when a new task is received by a cluster. An Expander evaluates a received task and generates one or more “subtasks” based upon the unique logic built into the PlugIn. The collection of subtasks is known as a “workflow”, which is sent to the LogPlan upon completion of Expander activities.

· Allocators – An Allocator recieves task messages from the LogPlan and uses its unique logic to assign tasks to available assets. An Allocator may assign a task to an asset controlled by the cluster in which it resides, or may assign the task to another cluster. Allocators keep the LogPlan informed concerning task assigments.

· Aggregators – Just as Expanders expand tasks, Aggregators aggregate tasks. PlugIns of this type combine many tasks into one or more tasks at a higher level of abstraction. Like Expanders, Aggregators communicate with the LogPlan and to receive task messages and send aggregation responses.

· Assessors – PlugIns of this type function as “cluster monitors”. Task messages are sent to an assessor to ensure that tasks are being handled correctly within the cluster. In some respects, assessors function as “troubleshooters”, ready to take corrective actions at such time as cluster behavior or performance varies significantly from an established norm.

· LDM PlugIns – As mentioned previously, an ALP society may interface with one or more external databases. Each LDM PlugIn is tasked with accessing data from a specific external database and ensuring that accessed data adheres to the society’s data conventions. LDM PlugIns allow other cluster components to utilize data from external sources while remaining ignorant of the specific format of that data.

· UI PlugIns – This type of PlugIn provides the functionality which allows users to interact with an ALP society. UI’s may be of several types (graphical, command line, voice, etc.) based upon the specific user hardware/software environment. The designers of ALP want to ensure that ease of access is incorporated within the construction of any society.

2. ALP Architecture Design Topics

2.1. Primary Object Model and Data Flow

A critical aspect of any Object Oriented software development effort is the definition of appropriate object types. These object types or “classes”, are the primary building blocks of the system. An object type can be perceived and treated similarly to language-defined data types such as “integer” or “string”. As such, these ALP defined types are really templates which define the characteristics of the system data and the operations which can be utilized to manipulate that data.

The ALP Architecture’s functionality derives from the manner in which its object types are utilized, much as the functionality of a bicycle derives from the manner in which its various hardware components are put together.

2.1.1. Primary Objects

A top-level view of ALP’s object model can be seen in Figure 2-1. A “walk through” is as follows:

[image: image4.jpg]
Figure 2-1 Primary Object Model

Node – A “node” (see Figure 2-2 below) is the primary implementation mechanism for an ALP society. A Java Virtual Machine (JVM) runs a Node which “contains” one or more clusters. The Node class defines the contents of a node and defines the communication methods between various nodes. The Node class has the following relationships to other class’s:

· A Node incorporates one or more Clusters.

[image: image5.png]
Figure 2-2 Node Related Objects

Cluster – Conceptually, a cluster can be considered the primary “building block” of the ALP system, acting as an “agent” on behalf of a business unit which is performing various tasks. The Cluster class incorporates information concerning unit identity and inter-unit relationships. Additionally, the Cluster class provides the mechanism to coordinate the activities of the various plugin objects that provide functionality to a cluster. The Cluster class has the following relationships to other class’s:

· One or more Clusters are incorporated within a Node.

· A Cluster can have many PlugIns.

· A Cluster contains a LogPlan.

· A Cluster owns one or more Assets (in the LogPlan).

MessageTransport – The MessageTransport class defines the content of the logistics communication which occurs among business units. The MessageTransport is the vehicle to transport messages through an inter-nodal communications mechanism class:

· A MessageTransport facilitates directives messaging.

· A specific type of Message is part of a Directive.

PlugIn – Conceptually, PlugIns provide functionality related to the logistics operations of Expansion, Allocation, Aggregation, and Assessment, as well as functionality related to other ALP services. The PlugIn class incorporates a template that can be specialized to define specific logistics operations carried out by a business unit. The PlugIn class has the following relationships to other class’s:

· A PlugIn is part of a Cluster.

· A PlugIn has Subscriptions for workflow, asset and allocation changes.

· A PlugIn sends task information to, and receives task information from, a LogPlan via the distributor.

Distributor – Conceptually, a distributor enables PlugIns to update and receive task information from the Logistics plan. A PlugIn will “subscribe” to the distributor to receive asset, workflow and allocations and will be notified when these types of tasks are transmitted to the Logistics plan. The Distributor class is a mechanism to update a PlugIn with task information changes. The Distributor class has the following relationships to other class’s:

· A Distributor is the hub for task updates for PlugIns.

· A Distributor references the Logistics plan.

Subscription – Conceptually, subscriptions enable PlugIns to receive the task information they require to function correctly. A PlugIn in will “subscribe” to a certain types of tasks, workflow and allocations and will be notified when these types of tasks are transmitted to the Logistics plan. The Subscription class defines a PlugIn request for task information. The Subscription class has the following relationships to other class’s:

· A Subscription is part of a PlugIn.

· A Subscription registers for a Task.

Task – Conceptually, a task is the basic “unit of work” in an ALP society. ALP’s primary function is the evaluation and allocation of tasks among business units. The Task class defines a task. The Task class has the following relationships to other class’s:

· A Subscription is created for a specific Task by PlugIns.

· A Task is a type of Directive.

· A Task is part of a Workflow.

· A Task is referenced by a LogPlan Element.

Directive – Conceptually, a directive is a task order sent from one business unit to another. A directive includes information regarding the specific task or tasks that must be performed. The Directive class defines a directive. The Directive class has the following relationships to other class’s:

· A Task is a type of Directive.

· A Notification is a type of Directive.

· A Message contains a Directive.

· An Asset Assignment is a type of Directive.

Notification – The Notification class defines a type of directive that is sent from one cluster to another to provide feedback on task allocation. The Notification class has the following relationships to other class’s:

· A Notification is a type of Directive.

· A Notification concerns an Asset.

Workflow – Conceptually, a workflow is the breakdown of a task into subtasks that can be allocated by the cluster. The Workflow class defines the collection of subtasks and allows the collection to be incorporated into the LogPlan. The Workflow class has the following relationships to other class’s:

· A Workflow contains one or more Tasks.

· A Workflow references an Expansion.

A Workflow references an Aggregation.

LogPlan– Conceptually, the LogPlan is the compilation of all logistics tasks that are assigned to a business unit. The LogPlan class incorporates this compilation, as well as other information related to tasks and assets. The LogPlan class has the following relationships to other class’s:

· The LogPlan contains one or more LogPlan Elements.

· The LogPlan is part of a Cluster.

· The LogPlan receives and sends task information to a Plugin through the distributor using subscriptions.

PlanElement – Conceptually, a LogPlan Element is the basic building block of a Logistics plan. The LogPlan Element class defines a LogPlan Element. The LogPlan class has the following relationships to other class’s:

· A LogPlan Element is part of a Logistics plan.

· A LogPlan Element has a Task reference.

· An Expansion, Allocation, Asset and Aggregation are all LogPlan elements.

LogicProvider – Conceptually, a logic provider provides additional internal functionality to a Cluster. Logic Providers are building blocks enabling Message and Envelope capabilities for a cluster. Envelopes are the transport mechanism used for subscriptions. The Logic Provider class has the following relationships to other class’s:

· A Logic Provider is part of a cluster.

· A logic provider allows a cluster to operate on tasks within the LogPlanas well as provide directive support.

Asset – Conceptually, an Asset (not in Figure 2-1 above) is a logistics resource that is assigned to a business unit in order to complete a logistics task, i.e., a truck, a tank, a company of troops. The Asset class defines an asset. The Asset class has the following relationships to other class’s:

· An Asset is associated with a specific Asset Assignment.

· An Asset is referenced in a Notification.

· An Asset is part of an Allocation.

AssetAssignment – The AssetAssignment class defines the unit assignment which is associated with a particular asset. The AssetAssignment class has the following relationships to other class’s:

· An AssetAssignment references an Asset.

· An AssetAssignment is a type of Directive.

Allocation – Conceptually, an Allocation is the assignment of an asset to a particular task. The type of asset assigned to a task identifies the unit which is responsible for completing the task. A similar class, AssetTransfer (not in the figure) triggers the side effect of generating an AssetAssignment. The Allocation class defines the assignment of an asset to a task. The Allocation class has the following relationships to other class’s:

· An Allocation assigns an Asset.

· An Allocation is one type of a LogPlan Element.

Expansion – Conceptually, an expansion is the breakdown of a task into subtasks that will be allocated by a cluster. Additional information is added to an expansion into order to create a Workflow. The Expansion class defines the elements of an expansion. The Expansion class has the following relationships to other class’s:

· An Expansion is a type of LogPlan Element.

· An Expansion becomes part of a Workflow.

Aggregation – Conceptually, an aggregation is the combination of several tasks into a “group” of tasks that can be assigned to the same business unit. Additional information is added to an aggregation in order to create a Workflow. The Aggregation class defines a group of tasks. The Aggregation class has the following relationships to other class’s:

· An Aggregation is a type of LogPlan Elements.

· An Aggregation becomes part of a Workflow.

2.1.2. Data Flow Management

2.1.2.1. Intra Cluster Data Flows

[image: image9.png]
Figure 2-3: Architecture Overview

Figure 2-3 above illustrates the typical flow of data within a cluster:

1. A Directive originates with a user or an external system. Workstation input is received and processed by a UI PlugIn.

2. The Directive (or Task) is created by the LDM Object Factory.

3. The new Task is placed in the LogPlan using the Plan API. Prior to committing the Task to the LogPlan, the Cluster checks to see which PlugIns have a Subscription for that Task.

4. If a particular Expander PlugIn has subscribed to the new Task, the LogPlan sends the Task to the Expander. The Expander expands the task and creates an Expansion.

5. The Expander PlugIn sends the Expansion back to the LogPlan.

6. Prior to committing the new Expansion to the LogPlan, the Cluster checks to see which PlugIns have a Subscription for that Expansion.

7. If a particular Allocator PlugIn has subscribed to the Expansion, the LogPlan sends the Expansion to the Allocator. The Allocator assigns assets to each task in the Expansion. Assets are one of two types: Organizational Assets or Physical Assets. Physical Assets are assets which are currently controlled by the cluster. An Organizational Asset is not a “real” asset, but an assignment of the task to another cluster, which will inherit the task and undertake task-asset assignments. The Allocator combines task and asset assignment information into a Workflow.

8. The Allocator sends the Workflow to the LogPlan.

9. Workflows which incorporate the assignment of Organizational Assets to tasks are sent to another cluster by the Cluster infrastructure.

2.1.2.2. Inter Cluster Data Flows

[image: image10.wmf]Legacy System

Node Infrastructure: Messaging, Registry (Admin Nodes Only)

Inter-Node

LDM Object Bus

-

PlugIn

- Cluster

E

- Expander

AL

-

Allocator

A

- Assessor

D

- Data

UI

- User Interface

UI

E

AL

A

D

Plan API

LogPlan

Cluster Infrastructure

LDM Object

Factory

MC2466

• • •

Figure 2-4: Inter-Cluster Communications

Figure 2-4 illustrates the typical flow of data between clusters. As illustrated, each cluster is incorporated within a Node, i.e., a Java Virtual Machine (JVM). Clusters which share a Node can communicate directly, but clusters in different Nodes must communicate via the Node communication mechanism. When sending a message to a cluster in another node, a cluster directs the message to the Node and allows the Node to direct the message to it’s appropriate destination.

2.2. Node

The Node class is a very “light weight” object that is concerned with the identification of its resident clusters and the management of its communication with other Nodes. Nodes are not concerned with the generation of Log Plans or any of the other major functions that take place within the ALP society of which it is a part. Thus, the Node is an “implementation object” which facilitates the communications infrastructure within an ALP society.

This class is responsible for: managing the resources of the computer, provide message handling for all inter-Cluster communications, providing the log file capability, and providing validation services to ensure all access request are valid before they are processed.
2.2.1. Java Virtual Machine

The Java Virtual Machine is an operating system specific implementation of what could be considered as an operating system in its own right. JVM’s themselves are written for many platforms but act as standalone bytecode interpreters. Bytecode or .class files which are in a standard format are interpreted by any machine running a JVM. Bytecode is readable/executable to all Java Virtual machines but not people themselves. One Node, the “admin node”, creates and maintains the ClusterRegistry.

2.2.2. ClusterRegistry

The ClusterRegistry is a Name Server mechanism for client server configured systems. The ClusterRegistry contains a log of the server systems available to any client making a request. ClusterRegistry entries are currently implemented using features of a package called Voyager from ObjectSpace. The use of the ClusterRegistry within ALP is a message transport mechanism which allows separately running ALP nodes to send messages or directives to each other.

When a client requests retrieval of the RegistryTerm instance from a server or admin node using a Domain Name as the lookup key, a Hashtable is used to execute the lookup. The RegistryTerm contains a particular Domain Name. Using this information a connection can be initiated using the registry term as reference within the voyager package. Communications continue within that mechanism.

If a registry term is not found the ALP system will break the link and run itself locally.

2.2.3. Cluster Management

Cluster management includes logic to create Clusters and mechanisms that allow Plugin component instantiation. While the Node is being initialized a node profile is created. This NodeProfile reads the Node and Cluster initialization files. These initialization files contain information such as the name of the clusters and cluster relationships. Cluster relationships include superior-subordinate and customer-provider. This is all stored in the NodeProfile. Then an initNode() method is called that does some node management and calls loadClusters().

The actually creation of a cluster is delegated to the createCluster method of Node. Just as a Node needed a NodeProfile, a cluster needs a ClusterProfile. Upon completion of createCluster, the Cluster is loaded, initialized, and started as a new Java thread. A clusterIdentifer is also created at this time. Next the Cluster’s PlugIns are loaded sequentially, based on the information stored in the ClusterProfile. Finally, the Cluster in the NodeProfile goes through the same process.

2.2.4. Metrics

To support integration and test, as well as support system monitoring and control, a number of system performance attributes (called metrics) are collected. Individual metrics include the totalMsgSentCount, totalMsgReceivedCount, totalNotifSentCount, totalNotifReceivedCount, totalAssetCount, totalPlanElemCount, totalTaskCount, totalWorkflowCount, totalLogPlanCount and instanceCount. The names of these metrics are self documenting. These attributes are collected and maintained by the Node and Cluster infrasturcture.

2.3. Cluster

2.3.1. Cluster Object Factory

The cluster object factory is a top-level factory for Cluster Objects which can be created by PlugIns of various sorts. While it does not subset these interfaces at this time, a given component may choose to both restrict access to these accessors and to choose how these objects actually get realized. The majority of the factory methods are of the form NewFoo newFoo() where Foo is the basic type to be constructed. The Return value is always an Interface type which extends the basic type with set-methods and other methods useful for constructing objects of this basic type. There are a few factory methods that return a completed or built object. These methods usually take arguments that are used to build the object.

2.3.2. Cluster Messaging

Communications in the entire society is facilitated by a combination of initial and dynamically created relationships. At startup pair-wise relationships are configured based on a societies natural structure. During execution a process of dynamic determination and assignment of support relationships transforms the possible communication patterns based on the state of the system and real world conditions and requirements. Finally, dynamic reassignment of command relationships can occur in response to runtime needs. These relationships include superior/subordinate and customer/provider.

Superior/subordinate relationships are established by “Report_For_Duty” directives

at startup time or dynamically. This relationship establishes a channel for: sending policies down. Policies inform a subordinate about how they should do their job and how and when progress reports are to be processed.

Customer/provider relationships are established dynamically by “Report_For_Service” directives provided by superior to a subordinate. These relationships establish channels for passing allocated service tasks, instructions for handling task and receiving allocation results. Updates of state for estimation purposes also use this logical communications path.
2.3.3. Cluster Infrastructure

Clusters are built from the node class (see Activity diagram Figure 2-5 on next page). The node class itself is a thread started from within the nodes main method. On instantiation it creates a messenger thread responsible for reporting node activities out to a log file. After this, cluster profiles are created by reading the initialization file content. The initialization file must be the same name as that set in the node script file parameter name. Thus node testnode will cause the profiler to look for a “testnode.ini” file. Within this “testnode.ini” is a list of the clusters which ALP will bring up. The cluster names therein cross reference other “.ini” files whose filenames correspond to the names in the “testnode.ini” list.

Once cluster profiles are generated they start as independent threads. The cluster threads reference the separate PlugIns for each cluster thread through the separate cluster “.ini” files. The list of PlugIns in a cluster “.ini” file are references to Java classes which are loaded into the cluster definition. Once the cluster PlugIns are loaded the cluster messaging commences.

Cluster implementations use the GenericStateModel framework (Figure 2-6) through the clusterStateModel interface. Implementation of the cluster sets its initial state to UNINITIALIZED, moving to UNLOADED on initialization. After setting up the LogPlan and LogicProviders through loading, the state moves to LOADED. On starting the runnable Cluster the state moves to ACTIVE. States can transition from IDLE to ACTIVE depending on the status of the clusters.

[image: image6.jpg]
Figure 2-5. Activity Diagram for Node Thread creation.

[image: image7.png]
Figure 2-6. State Diagram for GenericStateModel

2.3.4. Logic Providers

Logic Providers define a common interface shared by "business rule process" providers. The interfaces are generic and interpretation of usage varies depending on application context. Logic Providers can be thought of as “Infrastructure PlugIns”, providing a modular mechanism to add infrastructure functionality.

The Logic Provider interface hierarchy is illustrated below:

· LogicProvider

· EnvelopeLogicProvider

· MessageLogicProvider

· LogPlanServesLogicProvider

· ClusterServesLogicProvider

EnvelopeLogicProvider

Interface indicating that the Logic Provider is for handling parts of Envelopes (EnvelopeTuples) rather than Messages. Envelopes are containers for Messages.

MessageLogicProvider

Interface indicating that the Logic Provider is for handling Messages rather than transaction Envelopes.

LogPlanServesLogicProvider

Interface indicating that the Logic Provider is for handling additions, deletions, and searches of the LogPlan

ClusterServesLogicProvide

Interface indicating that the Logic Provider handles synchronous and asynchronous messaging.

Concrete implememtations of Logic Providers include:

· AssetTransferLP

· MetricsLP

· NotificationLP

· ReceiveAssetLP

· ReceiveNotificationLP

· ReceiveTaskLP

· RemoteClusterAllocationLP

· RescindLP

· WorkflowAllocationLP

AssetTransferLP

A "LogPlan Logic Provider” that extends EnvelopeLogicProvider. Provides the logic to capture PlanElements that are AssetTransfers and send AssetAssignment tasks to the proper remote cluster.

MetricsLP

A "LogPlan Logic Provider" that extends EnvelopeLogicProvider. Creates metrics as discussed in Section 2.2.4.

RescindLogicProvider

A "LogPlan Logic Provider" that extends EnvelopeLogicProvider. Provides the logic to capture rescinded PlanElements.

ReceiveAssetLP

A sample LogicProvider, which extends MessageLogicProvider, for use by ClusterDispatcher to take an incoming AssetAssignment Directive and add Asset to the LogPlan with side-effect of also disseminating to other subscribers.
ReceiveNotificationLP

A sample LogicProvider, which extends MessageLogicProvider, for use by ClusterDispatcher to take an incoming Notification Directive and perform modifications to the LOGPLAN

ReceiveTaskLP

A sample LogicProvider, which extends MessageLogicProvider, for use by ClusterDispatcher to take an incoming Task (excepting Rescind task) and add to the LogPlan with side-effect of also disseminating to other subscribers. Only adds tasks that haven't been seen before, allowing stability in the face of wire retransmits.

RemoteClusterAllocationLP

A "LogPlan Logic Provider" that extends EnvelopeLogicProvider. Provides the logic to capture Allocations against remote Clusters.

RescindLP

A "LogPlan Logic Provider" that extends EnvelopeLogicProvider. Provides the logic to capture rescinded PlanElements. Attempts to do a complete LogPlan rescind walk, not depending on being re-called to do the "next" level of rescind.

WorkflowAllocationLP

A "LogPlan Logic Provider" that extends EnvelopeLogicProvider. Creates a Workflow object from an Exapansion and adds it to the LogPlan.
2.3.5. LogPlan

LogPlan is a subscriber to the Cluster’s Distributor. All Cluster Infrastructure and PlugIn subscribers are notified of each new subscription and are expected to send Envelopes as appropriate (only if the subscriber's predicate is of the right sort.) Additionally, when a provider which provides persistence of information first registers with a Distributor, it should send Envelopes to the Distributor containing any old (persisted) data to be distributed potentially to all the other subscribers.

2.3.6. Plan API

The Plan API is a mechanism for PlugIns to obtain updates from Distributor on the delivery of Tasks or Assets to the LogPlan. Generally, Distributor Subscriber relationships are correlated between the PlugIns, where the plugin can subscribe to an envelope. If subscribers do not get a direct delivery notice they are remembered by a Hysteresis Provider. When an update occurs to the LogPlan that effects a subscriber they are notified through the Distributor.

By definition a Distributor distributes Envelopes to all subscribers who have registered a subscription. Distributor also keeps track of special "hysteresis" subscribers which are tapped to maintain any and all required short-term memory of complete collections for use when a new subscriber plugs in.

Further a Subscription represents a view of a Plan with in three parts, (1) a description of the view (predicate, etc), (2) a JGL collection that represents the slice of the plan and (3) an api to be used to mutate the plan. The Subscription is described by the getPredicate() and getSubscriber() methods. The view of the Plan is represented by a real Container (getContainer()) and by implementing the Container API by delegating to the real Container. Also, a set of abstract "delta" lists are provided which lend a view into the changes made to the container(s), e.g. getAddedList(). The mutation API allows consumers to add, remove and mark objects as changed in the Plan. The referenced objects might or might not be members of this subscription.

It provides bulk data import (as a single envelope!) to subscriber. Called by Distributor whenever a new subscription appears. The result of the call should be a single call to subscriber.receiveEnvelope() with whatever data the InnerLogPlan provide is maintaining. This method should not block for any length of time, but rather queue the request for later filling. (see Figure 2-7)

Envelope is an encapsulation of an atomic update of a set data structure. E.g. A representation of a Container-level transaction. Envelope does no synchronization - it must never be accessed simultaneously by multiple readers/writers. There are several types of transaction elements (EnvelopeTuple) supported:

 ADD add an object to the set.

 REMOVE remove an object from the set.

 CHANGE mark the object as changed in the set.

 BULK like ADD of a set of Objects, with the slightly different functional semantics. In particular, since these are only emitted by HysteresisProviders (e.g. LogPlan) on initialization of subscriptions, and by PersistenceSubscribers on LogPlan rehydration, LogicProviders function differently on BULKs than ADDs, for instance, business rules which fire on new LogPlan elements and produce other LogPlan elements will not fire on BULKs because the BULK delta should already include those products.

A simple case of how distributor subscriber transactions operate is shown in the sequence diagram below. The objects involved are generated from the DistributorTest class. The DummyClient object is the parent to both the DummySender and the DummyWatcher classes. Its capable of sending updates to the LogPlan through similar mechanisms to the DummySender and Watcher.

On creation of a cluster the distributor thread is created once and then started. Thereafter, the ClientDistributor (this is the PlugIns interface to the Distributor) is set and started within the DummyClient. The distribution Thread then runs and envelope distribution waits for notification to update the Watcher class of new arrivals.

The Dummy Sender class more or less duplicates the same operations though uses the existing running distributor thread for any transactions. The sender run method however publishAdd()’s information to the subscriber class for it to update the distributor containing with created envelopes that represent the transaction. On receiving these envelopes the distributor updates the watchers subscription service. This information is then made available for the watcher mechanism.

The overall approach shows that LogPlan elements are available for any PlugIn which needs to look for the Assets or Tasks (or even Verbs) being sent to a LogPlan.

[image: image8.png]
Figure 2-7. Sequence Diagram for the Distributor Test

2.3.6.1. Plan API Concepts

For the user of the Plan API, most notably the PlugIn developer, the most important concept is the Subscriber. Using the Subscriber API which is exposed through EssentialPlugIn, the PlugIn may establish one or more subscriptions with the Plan API, and as a result receive objects of interest.

The Plan API provides the user with a flexible interface that allows the PlugIn to maintain its own collections of items. Using the Subscriber API, the user specifies its objects of interest via a JGL UnaryPredicate, and receives the objects of interest in an extension of a JGL Container, called a Subscription. For instance, in order to maintain a collection of expandable Tasks, a PlugIn could use the following code:

2.3.6.2. State Model

The Plugin Adapter uses the GenericStateModel framework through the GenericStateModelAdapter interface. (Figure 2-6)

PlugIns may be dynamically loaded, run, and unloaded during Cluster execution. These capabilities are supported by the Generic PlugIn interface. PlugIns are initialized in five distinct phases as described in detail below. After initialization, the components that may use the PlugIn are notified.

The PlugIn implements a method defined in the component-specific PlugIn interface to advertise to the Cluster that it can be plugged into that component. This method is described here in order to illustrate the complete initialization sequence.

PlugIns are created and initialized with the following method calls:

1. The PlugIn instance is created.

2. The plugin.initialize(arguments) method is called on the new instance to pass any required dynamic arguments to the new plugin instance. At this point, the PlugIn should be in the UNLOADED state.

3. The plugin.load(ClusterIdentifier) method is called to notify the PlugIn of it's cluster context and to transition its state to LOADED.

4. The plugin.start() method is called to allow the new PlugIn to start any threads of execution it needs.

The new PlugIn instance is passed to each appropriate Cluster Component, each in turn calling the appropriate plugin.serveXComponent(XComponent x) method to notify the PlugIn of its component(s). Note that this method is actually defined in the component specific PlugIn interface, but is included here for completeness.

Note that the plugin state transition methods are all provided through the Essential PlugIn and need only be overridden by developers if they want to provide additional functionality. The Generic PlugIn interface that must be implemented by all PlugIns is shown above.

2.3.6.3. Wrapping Concepts

2.3.6.3.1. LDM PlugIn Functionality

LDM PlugIns support mapping contemporary (or external) data into the ALP society. Contemporary data can include files in the local file system, databases, and Web pages hosted by computers at remote or local sites. These PlugIns provide automated updating and lazy evaluation of asset property values as they are required. LDM PlugIns interact directly with the LogPlan in the same manner as all other PlugIns. LDM PlugIns can perform their functions as a result of initialization or when triggered by a LogPlan data access.

The LDM contains the Java implementation of the ALP Logical Data Model (LDM). We divide data into Contemporary Data and ALP Data, because we treat data in each classification in fundamentally different ways. The ALP system manages ALP Data, while Contemporary Data resides in systems external to ALP. Contemporary Data is data owned and managed by an organization external to ALP. Gaining access to or copies of such data generally requires obtaining the permission of the owner. We expect most of the owners of Contemporary Data needed by ALP will be Department of Defense organizations, but some sources of interesting data, e.g., commercial ship schedules available from a World-Wide Web site, are created and managed by organizations outside the Government.

LDM PlugIn developers will have a different set of interests when compared to the developers of Domain or UI PlugIns. Their role is to understand the external data sources and provide access to that data. Just as Domain PlugIns embody domain knowledge, the LDM PlugIns domain is the data resource to which they provide access.

At a high level, LDM PlugIns provide a means to bring data from contemporary (or external) data sources into the ALP society of Clusters. An LDM PlugIn accomplishes this by accessing the external data source it knows about, and creating or modifying LDM objects directly, based on that data.

LDM PlugIns can be implemented by extending the class EssentialPlugIn. The class DefaultPrototypeProvider is an example of such a PlugIn.

2.4. Logical Data Model (LDM)

The Logical Data Model (LDM) contains the data that is required for a given cluster. Included in the LDM are not only the classes necessary to obtain instances of domain-specific objects, but also the classes necessary to communicate within and without ALP Clusters. Both Domain and UI PlugIns require an intimate knowledge of both of domain-specific and ALP-specific classes to perform their functions – they maintain a foot in both camps.

 LDM Plug-ins are used to query contemporary data sources, such as the Joint Total Asset Visibility (JTAV) database, to construct asset objects. A contemporary data source is a data source that is external to the ALP society. Examples of contemporary data sources are local data files, databases and even web pages. Once the appropriate queries are made to retrieve the assets for a given cluster, the LDM constructs the asset objects and enters them into the Log Plan. This is done so that the LogPlan is aware of all of the assets for the given cluster.

2.4.1. Assets

Assets represent the domain specific elements, such as supplies, that are required to support a given cluster. When the cluster is first initialized, the assets are created, instantiated and stored into the LDM by the Log Plan. They are stored into the LDM as objects. To retrieve the information stored within the LDM, a plug-in can request information by interfacing with the Log Plan.

A prototype is associated with each asset type that is created. A prototype contains all the generic information about a given asset. When additional assets are created that differ from the generic prototype, a new instance of the asset is created. When the new asset instance requires additional information that it does not have, the asset will then delegate a request to the prototype to obtain the appropriate information.

Each asset contains a set of properties, called a property group. Properties represent the characteristics of a given Asset. Since all assets have physical characteristics, a physical property group is assigned to asset by default. Physical properties include characteristics such as the volume, size and weight of a given asset.

Properties are stored within a vector in the instantiated asset. Plug-ins can query the asset to obtain the list of properties.

Each Asset is capable of supporting multiple, capabilities and roles. In ALP, capabilities and roles are used to separate the relationships among various assets. Capabilities represent the abilities that Assets can perform. Capabilities can be dynamically added to removed from a given asset at runtime. Roles and capabilities can be specified for a given asset either through inheritance or through prototyping methods.

2.4.2. Workflow

A Workflow is a type of Alp object and is the result of a Task expansion consisting primarily of a partially ordered set of Task instances. There are many sorts of Workflow implementations possible, ranging from a strictly-ordered vector of subtasks, to an unordered Bag, to a set of DAGs, or even a complex, temporally-ordered set.

The PlugIn derives information from its stored knowledge, possibly in the form of templates, to create a Workflow. This information includes implied Tasks, task precedence relationships (Constraints), and task properties, such as expected duration. The Workflow embodies the logistic activities satisfying the input specified Task. The Expander PlugIn uses the ClusterObjectFactory to create a new Expansion object. The Workflow is placed in the Expansion. This Expansion is itself also a PlanElement object, which is added to the LogPlan through the Plan API. The Plan API places the Workflow in the LogPlan as a first class LogPlan element as a side effect of the PlugIn adding the PlanElement.

Initially, the Workflow specifies the relationships between these tasks, such as order, precedence, and concurrency (via Constraint objects). When allocated, the combination of workflow and associated plan objects describes the specific assets and schedules for executing the prescribed tasks and the relative penalties for these assignments.

There are a number of items that can be associated with a Workflow. Each Workflow has a penalty value that represents the aggregation of all of the sub-tasks’ penalty values. A schedule is also associated with a workflow. The schedule of a workflow represents the schedules of all of the sub-tasks. A Workflow also contains a reference to all of the assets that are currently being worked upon by each of its sub-tasks.

2.4.3. Directives

A directive is a high level message that can be sent to a cluster. Directives represent the requirements that are required to perform a task and are comprised of task assignments, rules and policies. A cluster can receive a directive from a person using a User Interface (UI) plug-in. A cluster can also receive and send directives to other clusters in the ALP Society. Directives can also be sent to real – world logistic entities in order to instruct them to carry out a given task to fulfill a LogPlan requirement. There are various types of directives that are used to communicate tasks, rules and policies to different entities.

2.4.3.1. Task

A Task is a kind of “Execute” directive that serves as an instruction to plan and eventually accomplish the given logistics activity. Tasks can be inserted into the system either by personnel or systems external to ALP or by ALP PlugIns. These Tasks describe the functions that an asset (physical or organizational) must perform in order to satisfy a given logistics directive. LogPlan Tasks exist at two levels of fidelity. The first is the original incoming directive (the BaseTask of a workflow). The second are the tasks contained in a workflow, which when performed as a whole, complete or satisfy the BaseTask of a Workflow. The Workflow sub-tasks are the low-level Tasks implied by the high-level input Task.

A given task contains attributes that the LogPlan can access. Through a set of defined interfaces, task attributes such as the verbs, prepositional phrases and the penalty function can be retrieved. The attributes that a task is comprised of, can be described by an Task grammar. Each part of the Task represents a particular grammatical piece of a sentence describing a logistical action.

2.4.3.2. Notification

A notification is a specialized directive and is a response to a directive that was sent to a given cluster. It is used to synchronize the event messages in between the various clusters. A Notification includes items such as the task, the schedule, the penalty value and possibly the allocations. Notifications provide penalty feedback for the associated allocations produced by the Cluster. This feedback enables the Cluster originating the Directive to continually evaluate its defined allocation.

2.4.3.3. Asset Assignment

An asset assignment is a specialized type of directive that transfers asset ownership from one cluster to another. This type of directive contains the asset that is to be transferred to a given cluster. It also contains the schedule, or time frame, of which the specified asset is to be assigned to the cluster. This type of directive is useful in situations when a cluster, is assigned a task, but does not have the assets required to execute the given task. When a cluster receives an asset assignment directive the result is the creation of an Asset Transfer Plan element.

2.4.4. PlanElement

PlanElements are the primitive building blocks from which LogPlans are constructed. LogPlans contain a list of references to all of the PlanElements that are a part of a cluster. A single PlanElement represents a cycle of work completed against a Task. A PlanElement is of type Expansion (represented by a Workflow and the implied tasks embodied in it), Allocation (represented by an Asset) Aggregation (represented by an MPWorkflow) or AssetTransfer. For any given LogPlan there can be only one PlanElement instance per Task (Plan constituent).

2.4.4.1. Allocation

An Allocation is a type of PlanElement that represents the Asset that will complete the Task. The Allocator PlugIn creates PlanElements, each of which contain a Task (from a Workflow) and the Task’s Allocation. An allocation may assign physical assets to accomplish the Task, or it may assign the Task to another Cluster. The Allocator PlugIn publishes the Plan Elements into the LogPlan. The Allocator allocates and schedules the Cluster’s assets in order to satisfy the aggregate allocatable workflow. PlugIns are specialized by domain and echelon so that Clusters operating in a specific domain and echelon use only the PlugIns that are relevant and to its specific allocation operations. Examples of specialization for Allocator PlugIns range from simple, next-available asset assignment to a full-blown Genetic Algorithm scheduler. In all cases, implementations of Allocator PlugIns add PlanElements to the LogPlan by selecting feasible allocation schedules and associated penalty values for these allocations.

The Allocator runs continually, acquiring its list of allocatable workflows directly from the ClusterCollection (by registering for objects of interest). Once the Workflow Tasks are analyzed for their requirements, the Allocator PlugIn obtains an enumeration of available assets that match required properties specified by these Tasks. Assets are acquired using the same Plan API mechanisms for retrieving any LogPlan object of interest.

2.4.4.2. Aggregation

An Aggregation is a kind of PlanElement that represents a Multi-Parent (MP) Workflow that is the result of an expansion of multiple Tasks. The Aggregator aggregates several incoming directives (Tasks) into an implied Task or Tasks necessary to complete the directive. Aggregator PlugIns contain specific knowledge regarding task aggregation within an area of specialization. PlugIn implementations across multiple Clusters or within a single Cluster might vary only by their associated knowledge. The Aggregator interacts with the LogPlan through the defined Plan API mechanisms. The Plan API mechanisms allow multiple PlugIns to register and receive specific LogPlan elements. The PlugIn is responsible for retrieving new Expandable Tasks from the ClusterCollections. Note that the Aggregator functions very similarly to an Expander; the difference is that an Aggregator combines several Tasks into a single Task or several new Tasks, whereas an Expander breaks a single Task into several Tasks.

The PlugIn derives information from its stored knowledge, possibly in the form of templates, to create a MPWorkflow (multi-parent Workflow). This information includes implied Tasks, task precedence relationships (Constraints), and task properties, such as expected duration. The MPWorkflow embodies the logistic activities satisfying the input specified Tasks. The Aggregator PlugIn uses the ClusterObjectFactory to create new Aggregation objects, one for each input task. The MPWorkflow is placed in each Aggregation. The Aggregations are themselves PlanElement objects, which are added to the LogPlan through The Plan API. The Plan API places the MPWorkflows in the LogPlan as a first class LogPlan elements as a side effect of the PlugIn adding the PlanElements.

2.4.4.3. Expansion

An Expansion is a kind of PlanElement that represents a Workflow that is the result of an expansion of a Task. The Expander PlugIn processes the incoming Task and generates a Workflow (a set of subtasks that must be accomplished in order to accomplish the input Task). The Expander PlugIn creates a PlanElement that contains the incoming Task and the Workflow it created. The Expander PlugIn publishes the PlanElement in the LogPlan. The Expander expands incoming directives into the implied Tasks necessary to complete the directive. Expander PlugIns contain specific knowledge regarding task expansion within an area of specialization. PlugIn implementations across multiple Clusters or within a single Cluster might vary only by their associated knowledge. The Expander interacts with the LogPlan through the defined Plan API mechanisms. The Plan API mechanisms allow multiple PlugIns to register and receive specific LogPlan elements. The PlugIn is responsible for retrieving new Expandable Tasks from the ClusterCollections.

The PlugIn derives information from its stored knowledge, possibly in the form of templates, to create a Workflow. This information includes implied Tasks, task precedence relationships (Constraints), and task properties, such as expected duration. The Workflow embodies the logistic activities satisfying the input specified Task. The Expander PlugIn uses the ClusterObjectFactory to create a new Expansion object. The Workflow is placed in the Expansion. This Expansion is itself also a PlanElement object, which is added to the LogPlan through the Plan API. The Plan API places the Workflow in the LogPlan as a first class LogPlan element as a side effect of the PlugIn adding the PlanElement.

2.4.4.4. Asset Transfer

An Asset Transfer is a type of Plan Element that represents an Asset being assigned to another Cluster for use. An AssetAssignment Directive is closely a related object type.

2.4.5. Role Schedule

A Role Schedule is a representation of an asset's scheduled commitments. These commitments (plan elements) are stored in a JGL container. Role Schedules do not transfer with an asset across cluster boundaries, therefore, the Role schedule is only valid while that asset is assigned to the current cluster.

[image: image11.png]
2.5. ALP’s Physical Layout
Figure 2-8: ALP Physical Layout

The diagram above illustrates the physical layout of an ALP-based system.

1. Users interact with an ALP-based system via a GUI resident on a user workstation. Workstations may vary in hardware and operating system configuration. Via the workstation GUI’s, users can initiate a number of different functions, i.e., querying data, issuing directives, or coordinating tasks with other users.

2. User messages are routed via LAN or WAN to one of several servers hosting one or more ALP-based software components. The servers vary in hardware type and operating system.

3. System components perform most functions by interacting with one another. Consequently, the system is constantly sending messages among the many servers which host various ALP-based components. As a society expands, new components will be added to existing servers or new servers.

4. Various components access necessary data from a variety of existing data stores. These databases are accessed by one or more components via LAN or WAN.

5. The primary output of an ALP-based system, LogPlan information, is generated via interaction of various components. This information is provided to users, automatically or on-demand, via GUI’s resident on the user workstation.

2.5.1.1. Implementation Notes

Software and Hardware Specifics

· Implementation Language: JAVA

· HW Platforms: COTS PC’s, Workstations, Servers

· Operating Systems Supported: Windows NT, UNIX, LINUX

Developers Toolkit

Because the implementation of ALP is pushing the limits of modern software engineering practice and tools, the sponsors of this system are encouraging developers to experiment with an assortment of software development tools and processes. Consequently, the many developers who contribute to the implementation of ALP use a variety of tools with various levels of success. The following tools have been used by one or more of these developers:

JAVA Development Tools

· JDK1.1.6+

· J-Builder

· Visual Café

Application Programming Interfaces

· Swing

· JESS

· Jpython

· ObjectSpace Voyager

· ObjectSpace JGL

UML Modeling/Design Development Tools

· Rational Rose for Java

· Sterling COOL:Jex

· Object International’s Together J

SW Requirements tool: DOORS

Database Tools

· ORACLE DBMS

· Microsoft SQL

· Sybase

XML

ClearCase

ECMAScript

Appendix A - Glossary

ALPObject

A container interface for grouping together a set of interfaces which are useful for accessing common functionality of all ALP Objects. Currently, this consists solely of Quality of Service for Objects and object listener services. In the future, naming and other debugging services might be added.
ALPObjectImpl

Implementation of Simple ALP Object functionality to be used by the canonical clusterObjects implementations.

Note that although these definitions do not themselves require synchronization, any overrides may, so implementors should be aware of thread issues.

ALPServer

 This class encapsulates a Voyager server. Each server would be started in its own Java VM. A Node is the only class that would extend this class. This class extends the class “Citizen”.
ArgTable

This class provides the containment of all arguments passed into the main command line. The class is fully self contained version of a Hashtable that accepts the String [] args list passed in to the command line and creates a arg->value relationship. All args not followed by a value point to an empty String. Everything is stored as a String object.

AssetTransferLP
AssetTransferLP is a "LogPlan Logic Provider". It provides the logic to capture PlanElements that are AssetTransfers and send AssetAssignment tasks to the proper remote cluster.
Citizen

This class is responsible for the high level encapsulation for all Citizen behavior. First it encapsulates all the Message transport layer for moving Message's through the Society. Second it encapsulates the use of the Federated Directory Service for the self deterministic behavior of the society. Third it provides all the recovery and exception handling for Async communication in the society.

CitizenProfile
This class server as the persistent data structure that defines the current running configuration of the Citizen. Each Citizen has a profile that is persistent and a copy that is currently in use.

CitizenProfiler

This class is responsible for handling all configuration issues for the Citizen. This is the class responsible changing the persistent state of a citizen.
Cluster

Cluster groups together all the interfaces that a Cluster must implement into a single class specification. No client should ever cast to Cluster and no member or argument should be typed as Cluster, rather this class is intended to be a precise specification of what a whole cluster must provide. In practice, however, this functionality may be split into separate modules and combined (or not) for actual cluster implementations.

Actual Cluster implementation are likely to implement more standard modules directly. For example, mil.darpa.log.alp.cluster.ClusterImpl also implements LDMServesPlugIn, ClusterContext, IMessageTransport and ProxyServer.

ClusterAdminMessageImpl

The parent class for all Cluster Admin Messages. Cluster Admin messages are messages created by the system aimed at A cluster management object. Their main function is to enable the system to communicate changes required with configuration and current running status of the underlying Cluster object.

This class provides type definition to support the messaging routing and distribution strategy.

ClusterIdentifier

Identifier for ClusterObjects in the Society. The identifier is intended to be unique and non-changing for the lifetime of the Cluster as it participates within a Society.

ClusterImpl

ClusterObject was designed specifically for the December 1997 Workshop. The intention is to create a temporary place holder for ClusterManagement until more mature implementations of ClusterManagement emerges. The choice of making the class final is intended to confirm that this class is NOT the generalization of ClusterManagement behaviors, but rather, a concrete prototype.

ClusterInitializationMessage

Private message sent from ClusterManagement to Cluster indicating that the Cluster Initialization is complete, and that the Cluster is free to go about it's business.

ClusterMessage

ClusterMessage interface identifies those method signatures associated with ClusterMessage. As of this implementation, there are no method signatures available outside of ALPINE development.

ClusterObjectFactory

Top-level Factory for Cluster Objects which can be created by PlugIns of various sorts. While we do not subset these interfaces at this time, one should keep in mind that a given component may choose to both restrict access to (by throwing exceptions) these accessors and to choose how these objects actually get realized.

The majority of the factory methods are of the form NewFoo newFoo() where Foo is the basic type to be constructed. The Return value is always an Interface type which extends the basic type with set-methods and other methods useful for constructing objects of this basic type.

There a few factory methods that return a completed or built object These methods usually take arguments that are used to build the object. The Interface return type are usually not the extending interfaces which contain set-methods (since the object has already been built).

ClusterProfile

This class server as the persistent data structure that defines the current running configuration of the Cluster. Each Cluster has a profile that is persistent and a copy that is currently in use.

ClusterProfiler

This class is responsible for handling all configuration issues for the Cluster. This is the class resposible changing the persistent state of a cluster.

ClusterStateModel

This is the interface that defines state transitions for clusters.

ClusterManagementServesCluster

Provide software component instantiation service to cluster.

Generally, calls something like Beans.instantiate(null, className) to find a class and then create a new instance of it. Note that unlike Beans.instantiate(), this method does not accept a classloader as an argument - ClusterManagement reserves the right to completely control which classloader(s) are used.

ClusterServesClusterManagement

Services provided to ClusterManagement by Cluster. Currently, the only service in addition to ClusterStateModel is message reception capability.

DefaultPrototypeProviderPlugIn

Serve some default prototypes to the system. At this point, this only serves stupid prototypes for (temporary) backward compatability. At start, loads some low-level basics into the registry. On demand, serve a few more.

Directive

Directive is the highest-level message which is directly relevant to real operations. There are no direct implementations of Directive, but there are several subclasses with implementations.

DirectiveMessage

DirectiveMessage is the highest-level message which is directly relevant to real operations. DirectiveMessage is defined as a ClusterMessage that contains a directive where directive is defined as any of Directive's subclasses (i.e. tasks, notifications, assetassignments, etc)

Distributor

Distributer distributes Envelopes to all subscribers who have registered a subscription. Distributor also keeps track of special "hysteresis" subscribers which are tapped to maintain any and all required short-term memory of complete collections for use when a new subscriber plugs in.

Envelope

Envelope is an encapsulation of an atomic update of a set data structure. E.g. A representation of Container-level transaction. Envelope does no synchronization - it must never be accessed simultaneously by multiple readers/writers.

EssentialPlugIn

EssentialPlugIn is a vacuous nearly complete CCV2-complient PlugIn. All other PlugIns need to be wrapped with a PlugInWrapper instance which is, itself, a subclass of EssentialPlugIn (for MB3.0). At the moment, most of the methods defined here are declared final to prevent breaking CCV2, but many will be overridable in the future to support more advanced plugin models. Now based on SingleThreadedPlugIn, it retains compatibility with previous versions of EssentialPlugIn while using the somewhat more modular new classes. Similar to SimplifiedPlugIn, but allows overrides on many state-model methods, and does not support setupSubscriptions(), so while transaction processing is done for you for execute(), you have to do your own wherever you do your initial subscriptions.

GenericStateModel

This is the interface that defines state transitions for clusters, components and PlugIns.

HysteresisProvider

All hysteresis subscribers are notified of each new subscription and are expected to send Envelopes as appropriate (hopefully if and only if the subscriber's predicates is of the right sort.) Additionally, when a hysteresis provider which provides persistence of information first registers with a Distributor, it may/should send Envelopes to the Distributor containing any old (persisted) data to be distributed potentially to all the other subscribers.

LdmFactory

This is the class that is responsible for generating a LDM object based upon a Data Dictionary string

LogicProvider

LogicProvider defines a common interface shared by "business rule process" providers. The interface is generic, however variance on interpretation of usage by application context.

LogWriter

This class is responsible for creating and maintaining a Log file for a specifc Alp Entity. any entity may create its own Log Writer if it has access permission to the computer resources managed by node
MessageImpl

All forms of Messages in the Alp system are derived from this base class originally Message
MessageTransport

 MessageTransport is a light-weight “drop in” replacement for the full-up message transport which implements a parallel channel for Messages of the class Message.

Node

This class is responsible for creating and maintaining a Node in the ALP system. A Node refers to the actual Java Virtual Machine (JVM) that contains the instantiated object of this class

NodeAdminMessageImpl

This is the main root class for all Node admin messages. Current implementation provides type safe checking for message routing and distribution

NodeProfile

This class server as the persistent data structure that defines the current running configuration of the node.

Each node has a profile that is persistent and a copy that is currently in use.

NodeProfiler

This class is responsible for handling all configuration issues for the Node. This is the class responsible changing the persistent state of a node.

Notification

Notification is a response to a task that was sent to a cluster. The Notification will inlcude things like the task, the schedule, the penaltyvalue and possibly the allocations

NotificationLP
RescindLogicProvider class provides the logic to capture rescinded PlanElements (removed from collection)

PenaltyFunction

A PenaltyFunction is a method of computing the "cost" of performing a Task. PenaltyFunctions are passed to service providers as a way of communicating the requestor's constraints and requests (e.g. scheduling, cost limitations, etc) to the provider.

PenaltyMeasure

PenaltyMeasure is a catchall interface for other classes associated with Penalty. In practice, the value of this interface is to hold constant values for types/units of penalty.

PenaltyValue

A PenaltyValue is the result of evaluating a PenaltyFunction in the context of an allocation, that is, an estimate of the cost of performing an action. The extension ComplexPenaltyValue provides multi-dimensional Values. Note: PenaltyValue extends PenaltyMeasure solely as a matter of convenience so that Values can access the (constant) attributes of PenaltyMeasure without class prefixes.

ParameterizedPlugIn
PlugIn classes which implement ParameterizedPlugIn may be passed a Vector of Strings to parameterize the instance between class instantiation and PlugIn.initialize(). While it is up to each implementation to decide what to do with the parameters, the alp.plugin. plugin classes all provide a protected getParameters() method which may be used by subclasses to retrieve the strings.
PersistencePlugIn
Trivial Adapter class for PersistencePlugIn implementations. Uses a PersistenceSubscriber (by default). Also a placeholder for more PersistencePlugIn convenience functions.

PlanElement

PlanElements represent the association of a Task and a Disposition (where a Disposition is either an Allocation or an Expansion - and in some cases an AssetTransfer). PlanElements make up a Plan. For Example, a task "move 15 tanks..." with an Allocation of 15 HETs could represent a PlanElement. The "LogPlan" is effectively a list of PlanElements, each of which is a triple of [Plan, Task, Dispositions]

PlugInAdapter

PlugInAdapter is a base class for implementing all of the most-basic structure of a PlugIn along with a set of convenience methods for accessing infrastructure functionality. PlugInAdapter handles the state model API and some initialization. Specifically undefined is any sort of threading model. It would appropriate for an PlugIn to extend directly from PlugInAdapter only if it wants complete control over threading (and is willing to make the effort to implement it). Other base classes which are simpler to use are SimplifiedPlugIn and the older EssentialPlugIn.
PlugInDelegate
An interface for getting at the (normally) protected Plan API methods of a PlugIn. Essentially all the of the protected Plan API methods of PlugInAdapter can be accessed via these public methods.

PlugInstateModel

This is the interface that defines state transitions for PlugIns. No longer adds any content to GenericStateModel. Differentiation retained for future expansion.

Predicate

Predicate is an interface which Predicate objects must implement. Predicate objects are used by the Cluster Collections to filter return sets of Collection Objects.

PrepositionalPhrase

A Prepositional Phrase is part of a Task. It contains a String representation of the preposition (from, to, with, etc) and an object (of type asset) that represents the indirect object.

PropertyFactory

AbstractFactory implementation for Properties. Prevents clients from needing to know the implementation class(es) of any of the properties.

Proxiable

An interface to advertise that an object is substitutable with a remote reference. Also a marker (and API) for telling the object who to use to send messages to request the actual information in a proxied object.

ProxyMessage

ProxyMessage is a marker interface for Messages having to do with Proxied ALPObjects.

ProxyResponseMessage

ProxyResponseMessage is the response to a ProxyQueryMessage. It contains the requested object (or null, in case of id not found) and the requested ID.

ReceiveAssetLP

Sample LogicProvider for use by ClusterDispatcher to take an incoming AssetAssignment Directive and add Asset to the LogPlan w/side-effect of also disseminating to other subscribers.

ReceiveNotificationLP

Sample LogicProvider for use by ClusterDispatcher to take an incoming Notification Directive and perform Modification to the LOGPLAN

ReceiveRescindLP

LogicProvider for use by ClusterDispatcher to take an incoming Rescind Directive and perform Modification to the LOGPLAN.

RemoteClusterAllocationLP

RemoteClusterAllocationLogicProvider class provides the logic to capture Allocations against remote Clusters

RescindLP

RescindLogicProvider class provides the logic to capture rescinded PlanElements (removed from collection). Attempts to do a complete LogPlan rescind walk, not depending on being re-called to do the "next" level of rescind.

RoleSchedule

A RoleSchedule is a representation of an asset's scheduled commitments. These commitments(plan elements) are stored in a jgl container. RoleSchedules do not travel with an asset accross cluster boundaries, therefore, the roleschedule is only valid while that asset is assigned to the current cluster.

SimplifiedPlugIn

SimplifiedPlugIn is a base class for writing small PlugIns with a very simple initialization and runtime model. Subclasses must implement setupSubscriptions() and execute(). The basic idea is that setupSubscriptions() will be called inside a transaction to do any initial subscriptions (leaving subscription changes intact for the first call to execute(), and then loop over standard in-transaction calls to execute().

Task

Task is the essential "execute" directive, instructing a subordinate or service provider to plan and eventually accomplish a task. The general form of a task is: Verb <DirectObject> {PrepositionalPhrase} per <Schedule> per <Constraints>
UnaryPredicate

UnaryPredicate is an operation performed by a predicate on a single argument. A Predicate is a Unary Function whose result represents the truth or falsehood of some condition. A Predicate might, for example, be a function that takes an argument of type int and returns true if the argument is positive.

� EMBED PBrush ���

ALPINE
TOC-i

April 30, 1999

[image: image12.wmf]MC2467

Node

Node

Inter-Node LDM Object Bus

-

PlugIn

- Cluster

E

- Expander

AL

-

Allocator

A

- Assessor

D

- Data

UI

- User Interface

Legacy System

Node Infrastructure: Messaging, Registry (Admin Nodes Only)

Inter-Node

LDM Object Bus

UI

E

AL

A

D

Plan API

LogPlan

Cluster Infrastructure

LDM Object

Factory

• • •

_986903512.doc
[image: image1.png]

_988048992

_986639009.doc
[image: image1.png]

